• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intervalos de confiança

Intervalos de confiança

Mensagempor miguel337 » Seg Jul 18, 2011 12:34

Boas

eu tenho um problema que me foi dado em que diz o seguinte,

O departamento de investigação de um fabricante de pneus está a investigar a duração de um pneu
utilizando um novo componente de borracha. Foram produzidos 16 pneus e a duração de cada pneu
foi testada. A duração média e o desvio padrão foram de 60139.7 e 3645.94 Km, respectivamente.
Admitindo que a duração média do pneu segue uma distribuição normal, determine um intervalo
a 95% de conança para a média.

ou seja

n=16
|x(media amostral) = 60139.7
desvio padrão = 3645.94
com intervalo de confiança de 0.95
e alfa = 0.05
alfa/2 = 0.025

no entanto eu uso a minha calculadora TI 84 plus para ver o Zinterval e dá me um intervalo de [58353,61926]
mas nas soluções tá [58197.3255,62082.0745]

e eu ja usei as distribuiçoes da calculadora , ja fiz á mão, usando a formula [ |x - ?z alfa/2 * desviopadrao/raízquadrada(n) , |x + ?z alfa/2 * desviopadrao/raízquadrada(n) ]


e continua a dar me o mesmo resultado, o que estou a fazer mal? nao compreendo

cumps
miguel337
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 18, 2011 12:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engª Eletrónica e Telecomunicações
Andamento: cursando

Re: Intervalos de confiança

Mensagempor Neperiano » Seg Jul 18, 2011 20:39

Ola

Em outras palavras você quer calcular os limites do processo

Eu faria assim

Z0,95 = (x - 60139,7)/3645,94

z0,05 = (x-60139,7)/3645,94

Pegaria o z da tabela
Mas não sei se pode

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.