• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Livro: Matematica basica para ensino Superior. LOGARITMOS

Livro: Matematica basica para ensino Superior. LOGARITMOS

Mensagempor santiago alves » Sex Jul 15, 2011 00:13

Olá galera...

Estou estudando por este livro na esperaça de conseguir acompanhar o curso de calculo...

Bem, minha duvida é como faço pra resolver estes exercícios::

5-) log2^x . ln(x) + ln(x-2) = 0

6-) 35=(1+x)4

8-) (2^(3x+1))/(3^(2x-1))=5^x

creio que com as resoluções destes o restante, dos exercicios ficaram mais claros!!!
desde ja agradeço...
santiago alves
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Abr 20, 2011 11:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Livro: Matematica basica para ensino Superior. LOGARITMO

Mensagempor Claudin » Sex Jul 15, 2011 00:18

santiago alves escreveu:Olá galera...

Estou estudando por este livro na esperaça de conseguir acompanhar o curso de calculo...

Bem, minha duvida é como faço pra resolver estes exercícios::

5-) log2^x . ln(x) + ln(x-2) = 0

6-) 35=(1+x)4

8-) (2^(3x+1))/(3^(2x-1))=5^x

creio que com as resoluções destes o restante, dos exercicios ficaram mais claros!!!
desde ja agradeço...


Primeiramente Santiago, deixo uma dica utilize o "Latex" para facilitar o entendimento, para que você possa ser ajudado.
As dúvidas seriam estas aqui?

5) log2^x.ln(x)+ln(x-2)=0

6) 35=(1+x)4

8) \frac{2^{(3x+1)}}{3^{(2x-1)}}=5^x
Editado pela última vez por Claudin em Sex Jul 15, 2011 01:36, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Livro: Matematica basica para ensino Superior. LOGARITMO

Mensagempor santiago alves » Sex Jul 15, 2011 00:40

Perdão pelo inconviniente....

a primeira formula eu escrevi errado, as demais estao de acordo com a forma expressa no livro...
esta é a formula certa!!!!

5-){log}_{x} (2) . ln(x) + ln (x-2)=0


É motivante saber que existe um suporte de tao alto nível disponível na internet aos que realmente tem o interesse de aprender a arte da matemática....

Meu problema em sí, esta em uma parte da resoluçao dessa eq. logaritmica:

{5-)log}_{x} (2) . ln(x) + ln (x-2)=0
\frac{ln(2)}{ln(x)}.ln(x)+ln(x-2)=0ln(2)+ln(x-2)=0

ln (2)  + ln (x-2)=0

não sei oq fazer com o "ln(x-2)" e ainda nao encontrei resposta na net e nem exemplos desse tipo mais detalhados...
se alguem tiver paciencia pra explicar um pouco mais detalhado seria de grande ajuda mesmo!!!

vlws!!!!
santiago alves
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Abr 20, 2011 11:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Livro: Matematica basica para ensino Superior. LOGARITMO

Mensagempor LuizAquino » Sex Jul 15, 2011 10:44

santiago alves escreveu:\frac{\ln(2)}{\ln(x)} \cdot \ln(x)+\ln(x-2) = 0\ln(2)+\ln(x-2)=0

Imagine que você tenha um número n diferente de zero. Quanto vale a fração \frac{n}{n} ? Ora, isso vale 1! Desse modo, o correto seria escrever:
\frac{\ln(2)}{\ln(x)} \cdot \ln(x)+\ln(x-2) = 1\cdot \ln(2)+\ln(x-2) =  \ln(2)+\ln(x-2)

Tome cuidado com as simplificações!

Agora, você tem a equação:
\ln(2)+\ln(x-2) = 0

Para resolvê-la eu vou dar uma dica. Lembre-se da propriedade de logaritmos que diz que:
\log_b (a\cdot c) = \log_b a + \log_b c

Aproveito também para lhe dar mais duas dicas:
  • Para fazer uma revisão dos conteúdos do ensino fundamental ou médio, um bom lugar para começar é o canal do Nerckie no YouTube:
    http://www.youtube.com/nerckie

  • Se você desejar assistir um curso no YouTube sobre Cálculo Diferencial e Integral I, então eu espero que o meu canal possa ajudar:
    http://www.youtube.com/LCMAquino


Observação

santiago alves escreveu:Livro: Matematica basica para ensino Superior. LOGARITMOS

Olá galera...

Estou estudando por este livro na esperaça de conseguir acompanhar o curso de calculo...


Bem, esse é um livro muito básico para um aluno do curso de engenharia. Procure não passar muito tempo utilizando ele como referência. É recomendado que você use um livro como, por exemplo, Cálculo Vol. 1 de James Stewart.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: