por vanessafey » Qui Jul 07, 2011 19:20
Determine explicitamente os coeficientes do polinômio P(x) = ax^2+bx+c em função dos valores f (0) , f (1) e f (2)
Gostaria de confirmar se estou no caminho correto. Comecei assim:
c=P(0)
a+b+c =P(1)
4a+2b+c =P(2)
aplicado em sistemas cujas matrizes incompletas possuem determinantes não nulos. Logo,
Temos que D=det[a,b,c] = -2
Dx=det[d,b,c] = 2
Dy=det[a,d,c] = -8
Dz=det[a,b,d] = 4
Usando a Regra de Cramer cheguei que os coeficientes do polinômio P(x) = ax^2+bx+c em função dos valores f (0) , f (1) e f (2) é x=-1,y=4 e z=-2
Seria isso mesmo?
-
vanessafey
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Jun 24, 2011 13:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por vanessafey » Qui Jul 07, 2011 22:38
Mas tbm cheguei que os coeficientes do polinômio P(x) = ax^2+bx+c em função dos valores f (0) , f (1) e f (2) são
x=1/2, y=-3/2 e z=1 E agora, qual está correto?
Como não sei escrever pelo látex... só postei a resposta pois o determinante sai todo desconfigurado.

-
vanessafey
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Jun 24, 2011 13:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma de coeficientes
por Jonatan » Qua Jun 16, 2010 15:22
- 4 Respostas
- 3713 Exibições
- Última mensagem por Jonatan

Qua Jun 16, 2010 21:13
Binômio de Newton
-
- funções com cálculo de coeficientes
por ezidia51 » Qua Mar 28, 2018 22:54
- 3 Respostas
- 7260 Exibições
- Última mensagem por ezidia51

Qui Mar 29, 2018 17:50
Funções
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:38
- 0 Respostas
- 1360 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:40
- 0 Respostas
- 1352 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:40
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:44
- 0 Respostas
- 1320 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.