• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites infinitos

limites infinitos

Mensagempor oleve » Qua Jan 21, 2009 18:15

oi gente , alguem sabe por que \lim_{x\rightarrow{2}^{-}}ln \left(x-2 \right)-\infty? me ajudem!!!!!!!!!!
oleve
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 20, 2008 18:21
Formação Escolar: GRADUAÇÃO
Área/Curso: QUÍMICA
Andamento: cursando

Re: limites infinitos

Mensagempor Sandra Piedade » Sáb Jan 24, 2009 22:30

Porque o gráfico de ln(x-2) se obtém do gráfico de ln(x) movendo-o duas unidades para a direita. Assim, a assímptota vertical que estava no x=0 passa a estar no x=2. ;)
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?