• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Limite

Cálculo de Limite

Mensagempor valeuleo » Dom Jul 03, 2011 17:54

Ajuda no calculo desse limite. Não consegui desenvolver, usei a regra do seno da soma como método, mas não consegui.

\lim_{x\rightarrow\pi}\frac{sen x}{x-\pi}

Grato
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Cálculo de Limite

Mensagempor Guill » Dom Jul 03, 2011 18:06

Podemos utilizar a regra de L'Hospital, sendo que \pi é a penas um número:

lim_{x\rightarrow\pi}\frac{senx}{x-\pi}


Derivando o denominador e o numerador:

lim_{x\rightarrow\pi}\frac{cosx}{1}

lim_{x\rightarrow\pi}cosx


Substituindo os valores:

cos\pi=-1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de Limite

Mensagempor valeuleo » Dom Jul 03, 2011 18:13

Guill escreveu:Podemos utilizar a regra de L'Hospital, sendo que \pi é a penas um número:

lim_{x\rightarrow\pi}\frac{senx}{x-\pi}


Derivando o denominador e o numerador:

lim_{x\rightarrow\pi}\frac{cosx}{1}

lim_{x\rightarrow\pi}cosx


Substituindo os valores:

cos\pi=-1


Não posso usar derivação... É o conteúdo pra uma prova de limites (exclusivamente)
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Cálculo de Limite

Mensagempor MarceloFantini » Seg Jul 04, 2011 06:38

Leo, use o fato que \sin (x- \pi) = - \sin x, portanto \lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{x \to \pi} \frac{- \sin(x- \pi)}{x - \pi} = -1 pelo limite fundamental.

Observação: não poste a mesma mensagem várias vezes, isto não fará alguém responder sua dúvida mais rapidamente e é desagradável para os outros usuários. Não seja impaciente, espere e alguém eventualmente responderá.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.