• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Matemática - Dúvidas

Indução Matemática - Dúvidas

Mensagempor Jucassaba » Qua Dez 10, 2008 11:43

Caros amigos,
estou sem entender como o examinador desenvolvel este caso, para ser bem expecífico, a duvida é no desenvolvimento da 2a para a 3a linha do passo indutivo, quando desenvolve o 1o. termo de P(k+1).

abaixo a proposição:

\sum_{i=1}^{n}i\left(i+1 \right)=\frac{1}{3}n\left(n+1 \right)\left(n+2 \right)\;\; \forall \:n\in N

Não há o que se falar com relação a Base da Indução para P(n) verdadeira onde n=1.
Na HIpótese Indutiva também não tenho dúvidas com relação a P(k) verdadeira para k\geq1.
Agora no Passo Indutivo eu não consegui enteder o desenvolvimento da 2a para a 3a linha.

Desenvolvo o primeiro termo de P(k+1) e aplico a hipótese indutiva.

\sum_{i=1}^{k+1}i\left(i+1 \right)\;\;\rightarrow \;\; \frac{1}{3}\left(k+1 \right)\left(\left(k+1 \right)+1 \right)\left(\left( k+1 \right)+2 \right)

até aqui, claro, tudo bem...

\rightarrow \;\;\; \frac{1}{3}k \left(k+1 \right)\left(k+2 \right)+ \left( k+1 \right)\left( k+2 \right)

da linha acima para esta seguinte q não entendo com foi feito o desenvolvimento.


\left(k+1 \right)\left(k+2 \right) \left( \frac{k}{3}+1 \right)

a simplifição acima não entendi. Entao fiquei inseguro para a ultima linha abaixo, que conclui o desenvolvimento do primeiro termo.

\frac{1}{3}\left(k+1 \right)\left(k+2 \right) \left(k+3 \right)

No desenvolimento do segundo termo de P(k+1) não tenho dúvidas. Está Ok.
Se os amigos puderem me ajudar eu agradeço.

Abraços Juca
Jucassaba
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 19, 2008 18:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Indução Matemática - Dúvidas

Mensagempor felipe correa » Qua Dez 10, 2008 19:29

Na expressão:

$$\frac{1}{3}k(k+1)(k+2)+(k+1)(k+2)$$

O termo (k+1)(k+2) foi colocado em evidencia:

$$\frac{1}{3}k(k+1)(k+2)+(k+1)(k+2) = (k+1)(k+2)\left[\frac{\frac{1}{3}k(k+1)(k+2)}{(k+1)(k+2)}+\frac{(k+1)(k+2)}{(k+1)(k+2)}\right]$$

$$
 (k+1)(k+2)\left[\frac{\frac{1}{3}k(k+1)(k+2)}{(k+1)(k+2)}+\frac{(k+1)(k+2)}{(k+1)(k+2)}\right]=(k+1)(k+2)\left(\frac{1}{3}k + 1\right)$$
felipe correa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 10, 2008 19:19
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática computacional
Andamento: cursando

Re: Indução Matemática - Dúvidas

Mensagempor Jucassaba » Qui Dez 11, 2008 09:58

Valeu mesmo. Tava travado nisso e não tinha "visto" como a solução foi desenvolvida.

Muito obrigado , Felipe!

[]'s Juca
Jucassaba
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 19, 2008 18:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: