• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRIGONOMETRIA

TRIGONOMETRIA

Mensagempor Soraya S de Simone » Dom Jun 26, 2011 13:34

Como simplificar a expressão (cotg x - tg x)/(sec x - cossec x) para 0<x<pi/2
Soraya S de Simone
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jun 26, 2011 13:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: TRIGONOMETRIA

Mensagempor Molina » Dom Jun 26, 2011 14:34

Boa tarde.

Experimente transformar cada termo em seno e cosseno e verifoque se vai ser possível cancelar algum termo.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: TRIGONOMETRIA

Mensagempor Soraya S de Simone » Dom Jun 26, 2011 19:20

Desenvolvi a expressão: ((cos x/sen x) - (sen x/cos x)) / ((1/cos x) - (1/sen x)) = ((cos ao quadrado de x - sen ao quadrado de x) / (sen x X cos x)) / ((sen x - cos x) / (sen x X cos x)) = (cos ao quadrado de x - sen ao quadrado de x) / (sen x - cos x)
A partir daí não consegui simplificar mais.
Soraya S de Simone
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jun 26, 2011 13:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: TRIGONOMETRIA

Mensagempor FilipeCaceres » Dom Jun 26, 2011 19:57

Você encontrou
\frac{cos^2x - sen^2x}{sen x - cos x}

Então faça o seguinte,
\frac{cos^2x - sen^2x}{sen x - cos x}=\frac{(sen x - cos x)(sen x +cos x)}{sen x - cos x}=senx +cosx

Utilize o latex para postar suas dúvidas leia viewtopic.php?f=9&t=74
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: