• Anúncio Global
    Respostas
    Exibições
    Última mensagem

semicircuferência em triângulo

semicircuferência em triângulo

Mensagempor Jean Cigari » Qui Jun 16, 2011 11:00

Não consigo resolver esse exercicio da UF-MG, ele esta na parte de semelhança de triangulos do meu livro, e eu não achei nenhum outro exercicio parecido com ele ou que falasse de semicircuferência em triângulo, gostaria de uma ''luz'', para onde eu tenho que seguir e aonde eu encontraria algo relacionado a isso. Obrigado
P.S: a resposta do livro é r=a (raiz quadrada de dois - 1), o que me deixou mais confuso ainda :S

UF-MG Na figura ao lado, ABCD é um quadrado de lado a e F é o ponto de tangência da diagonal BD com a semicircufêrencia de centro E. Calcule o raio da semicircuferência em função de a.
Imagem
Jean Cigari
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jun 16, 2011 10:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: semicircuferência em triângulo

Mensagempor souzafontes » Qui Jun 16, 2011 12:56

seguinte: pelo ponto de tangência passa uma reta normal que passa pelo centro da semicircunferência.
Imagem
por definição, se AB=a, então BD=a\,\sqrt[]{2},
Imagem
BF é igual ao raio r da semicircunferencia que tbm é igual a AE (ou seja, AE=BF=r)
Imagem
e EB é igual ao lado 'a' MENOS AE (EB=a-r)

percebendo então que os triângulos EBF e ABD são semelhantes, segue

\frac{a\,\sqrt[]{2}}{a}=\frac{a-r}{r}

\sqrt[]{2}=\frac{a-r}{r}

r\,\sqrt[]{2}=a-r

r(\sqrt[]{2}+1)=a

r=\frac{a}{(\sqrt[]{2}+1)}*\frac{(\sqrt[]{2}-1)}{(\sqrt[]{2}-1)}

r=\frac{a(\sqrt{2}-1)}{2-1}

r=\frac{a(\sqrt{2}-1)}{1}

r=a(\sqrt{2}-1)
souzafontes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Mai 31, 2011 14:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: semicircuferência em triângulo

Mensagempor Jean Cigari » Qua Jun 22, 2011 11:16

Entendi, obg :)
Jean Cigari
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jun 16, 2011 10:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59