• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funçoes de segundo grau

Funçoes de segundo grau

Mensagempor Fabricio dalla » Sex Jun 17, 2011 14:28

na funçao f:R--->R tem-se uma parabola da funçao f(x+1)-f(x)=6x-2 entao o menor valor de f(x) é ?


obs:é eu pensava que ja vi de tudo de funçao de segundo grau.ficarei muito grato quem resolver!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Funçoes de segundo grau

Mensagempor LuizAquino » Dom Jun 19, 2011 12:40

O texto está muito mal escrito.

Não seria algo como segue abaixo?

A função f:R--->R tem como gráfico uma parábola. Se f é tal que f(x + 1) - f(x) = 6x - 2, então o menor valor de f(x) é?

Considerando que esse é o texto, primeiro lembre-se que f terá o formato f(x) = ax² + bx + c.

Agora, determine o polinômio f(x+1) - f(x) e compare os seus coeficientes com os do polinômio 6x - 2. Com isso você verá que pode determinar os coeficientes a e b. Note que apenas com os dados desse exercício não temos como determinar o coeficiente c.

O menor valor de f(x) será -\frac{\Delta}{4a} . Esse valor ficará em função do coeficiente c.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Funçoes de segundo grau

Mensagempor Fabricio dalla » Dom Jun 19, 2011 15:53

na verdade eu que errei(desculpa) pois ele pergunta o menor valor de x para f(x) se menor ai meu amigo explicou

f(x+1)-f(x)=6x-2

[tex]
a{(x+1)}^{2}+b(x+1)+c-a{x}^{2}-bx-c=6x-2


2ax+a+b=6x-2


2ax=6x

a=3
portanto        
 6x+3+b=6x-2
     
b=-5
corrigindo o que tinha escrevido pois ele pergunta o xVe nao Yv temos que xV=5/6 a resposta.
desculpe por fazer vc perder tempo no meu erro de digitaçao LuizAquino. vlws pela atençao!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}