• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função - Complicated!

Função - Complicated!

Mensagempor jamiel » Sex Jun 17, 2011 16:24

\sqrt[5]{{3}^{2x}} = {2.187}^{\frac{{35x}^{2}-1}{35}}


{\left({3}^{\frac{2}{3}} \right)}^{x} = 7*\left(\frac{{35x}^{2}-1}{35} \right)



\left(\frac{2}{5}x \right) = \frac{{245x}^{2}- 7}{35}


\left(\frac{2}{5}x \right) = \frac{{35x}^{2}- 1}{5}


{-35x}^{2}:5 + (\left(\frac{2}{5} \right)x + \frac{1}{5})

{-7x}^{2} + (\left(\frac{2}{5} \right)x + \frac{1}{5})


\left(2:5*2:5 -4*(-7)*(1:5)\right)


4:25 -4*(-7:5)

\left(\frac{4}{25} \right)+\left(\frac{28}{5} \right)

\sqrt{\frac{140}{25}}

\left(\frac{2\sqrt[]{35}}{5} \right)




\left(\frac{\left-(\frac{2}{5} \right)x + \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)



\left(\frac{\left-(\frac{2}{5} \right)x - \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)


Alguém poderia me ajudar quanto essa resolução?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - Complicated!

Mensagempor MarceloFantini » Sex Jun 17, 2011 17:13

Qual o enunciado, o que a questão pede e o que você tentou fazer?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função - Complicated!

Mensagempor jamiel » Sex Jun 17, 2011 23:10

Apenas descobrir o valor de "x", ou seja, resolver a equação!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - Complicated!

Mensagempor MarceloFantini » Sáb Jun 18, 2011 15:49

3^{\frac{2x}{5}} = 3^{ 7 \cdot \frac{35x^2 -1}{35}} \Rightarrow \frac{2x}{5} = \frac{35x^2 -1}{5} \Rightarrow 35x^2 -1 = 2x

Agora basta resolver esta equação do segundo grau. Por favor, da próxima vez não use ponto para denotar milhares, eu fiquei achando que era 2 vezes 187 por um bom tempo até perceber.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função - Complicated!

Mensagempor jamiel » Sáb Jun 18, 2011 17:02

Ok. Quer dizer q eu poderia eliminar o denominador arbitrariamente? Eu sempre tendo ao caminho mais complicado! rsrsr
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - Complicated!

Mensagempor MarceloFantini » Sáb Jun 18, 2011 17:15

Não foi arbitrário. Note que se fosse \frac{2x}{7} = \frac{35x^2 -1}{13}, por exemplo, a equação ficaria 13(2x) = 7(35x^2 -1). Basicamente o que eu fiz foi multiplicar os dois lados por 5, eliminando o denominador em comum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função - Complicated!

Mensagempor jamiel » Sáb Jun 18, 2011 19:17

Então, quer dizer q sua multiplicação ficou assim:

7 * \frac{1}{35}\left({35x}^{2}-1 \right)



\left(\frac{1}{5} * \left({35x}^{2}-1 \right)\right)

\left(\frac{{35x}^{2}-1}{5} \right)

\left(5 * \left(\frac{{35x}^{2}-1}{5} \right) \right)

\left(\frac{{35x}^{2}-5}{5} \right)

\left({35x}^{2}-1 \right)

?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - Complicated!

Mensagempor MarceloFantini » Sáb Jun 18, 2011 19:34

Apenas no lado direito sim, e a propósito você esqueceu de multiplicar o 35x^2 por 5 na penúltima linha.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função - Complicated!

Mensagempor jamiel » Sáb Jun 18, 2011 19:36

Ok. Vlw mesmo!

Tenho dificuldade com relação a essas reduções de termos!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - Complicated!

Mensagempor MarceloFantini » Sáb Jun 18, 2011 19:53

Acredito que seja mais fácil de enxergar se você entender aquele produto assim: 5 \cdot \frac{35x^2 -1}{5} = 5 \cdot \frac{1}{5} \cdot (35x^2 -1) = \frac{5}{5} \cdot (35x^2 -1) = 35x^2 -1 pois \frac{5}{5} = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?