por SilviaTV » Dom Jun 12, 2011 20:12
Olá boa noite.
Eu sou nova aqui, e gostava se podessem que me ajudassem num problema que eu tenho para resolver e que nao consigo :S
Está aqui a imagem do problema...
[url]

[/url]
Uploaded with
ImageShack.usespero que me possam ajudar, obrigada (:
-
SilviaTV
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 12, 2011 20:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Seg Jun 13, 2011 17:47
DicaO volume de um prisma reto de base quadrada é V = b²h, sendo b a medida dos lados da base e h a altura.
Na construção de Margarida, x é a medida dos lados da base e 12 - 2x é a medida da altura.
Já na construção de Pedro, y é a medida dos lados da base e 18 - 2y é a medida da altura.
Agora, você precisa descobrir que medida x e que medida y maximiza cada volume correspondente. Após descobrir isso, o restante do exercício é facilmente resolvido.
Para saber como determinar o máximo (ou o mínimo) de uma função, eu recomendo a
vídeo-aula "21. Cálculo I - Teste da Primeira e da Segunda Derivada".
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por SilviaTV » Seg Jun 13, 2011 18:51
Obrigada (:
-
SilviaTV
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 12, 2011 20:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajudem !! Trigonometria - problema ...
por Lunn » Qua Mar 09, 2011 15:58
- 2 Respostas
- 2134 Exibições
- Última mensagem por Lunn

Qua Mar 09, 2011 19:50
Trigonometria
-
- [problema com exercicio] me ajudem?
por ibiel bad » Qua Set 26, 2012 16:41
- 2 Respostas
- 1568 Exibições
- Última mensagem por MarceloFantini

Qui Set 27, 2012 07:06
Funções
-
- [Problema de álgebra] me ajudem, por favor!
por chr1sal1da » Qua Jul 19, 2017 16:34
- 1 Respostas
- 5367 Exibições
- Última mensagem por petras

Seg Jul 24, 2017 00:22
Álgebra Elementar
-
- Amigos me ajudem resolver esse problema
por Catriane Moreira » Sáb Nov 06, 2010 23:11
- 1 Respostas
- 1481 Exibições
- Última mensagem por Rogerio Murcila

Ter Nov 09, 2010 14:35
Matemática Financeira
-
- Problema envolvendo Sistema? Ajudem-me por favor...
por joedsonazevedo » Sex Nov 09, 2012 12:40
- 1 Respostas
- 3355 Exibições
- Última mensagem por e8group

Sex Nov 09, 2012 14:25
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.