por Fabio Cabral » Seg Jun 13, 2011 13:27
Estou com dúvida para calcular esse limite.
![\lim_{x\rightarrow+\infty} \frac{2+\sqrt[]{x}}{2-\sqrt[]{x}} \lim_{x\rightarrow+\infty} \frac{2+\sqrt[]{x}}{2-\sqrt[]{x}}](/latexrender/pictures/1097d2720d18257c36aa00a54f20bbb8.png)
Tentei multiplicar pelo conjugado.
Tentei usar produto notável.
Tentei colocar em fração.
enfim..
A resposta é -1, porém, chego em vários outros resultados, menos o correto.
OBS: Sem utilizar L'Hopital.
Grato,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por Claudin » Seg Jun 13, 2011 14:58
Nem tinha percebido esse erro tambem
Editado pela última vez por
Claudin em Seg Jun 13, 2011 21:59, em um total de 2 vezes.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por AlbertoAM » Seg Jun 13, 2011 16:34
![\lim_{x\rightarrow+\infty} \frac{2+\sqrt[]{x}}{2-\sqrt[]{x}}=\lim_{x\rightarrow+\infty}\frac{2+\sqrt[]{x}}{2-\sqrt[]{x}}\left(\frac{2+\sqrt[]{x}}{2+\sqrt[]{x}} \right)=\lim_{x\rightarrow+\infty}\frac{x+4\sqrt[]{x}+4}{4-x}=\\\\\lim_{x\rightarrow+\infty}\frac{\cancel{x}\left(1+\cancelto{0}{\frac{4\sqrt[]{x}}{x}}+\cancelto{0}{\frac{4}{x}} \right)}{\cancel{x}\left(\cancelto{0}{\frac{4}{x}}-1 \right)}=-1 \lim_{x\rightarrow+\infty} \frac{2+\sqrt[]{x}}{2-\sqrt[]{x}}=\lim_{x\rightarrow+\infty}\frac{2+\sqrt[]{x}}{2-\sqrt[]{x}}\left(\frac{2+\sqrt[]{x}}{2+\sqrt[]{x}} \right)=\lim_{x\rightarrow+\infty}\frac{x+4\sqrt[]{x}+4}{4-x}=\\\\\lim_{x\rightarrow+\infty}\frac{\cancel{x}\left(1+\cancelto{0}{\frac{4\sqrt[]{x}}{x}}+\cancelto{0}{\frac{4}{x}} \right)}{\cancel{x}\left(\cancelto{0}{\frac{4}{x}}-1 \right)}=-1](/latexrender/pictures/8d1eb14032e8b4f8c4da2366607c642c.png)
Espero que entenda.
-
AlbertoAM
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qui Nov 11, 2010 15:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por AlbertoAM » Seg Jun 13, 2011 18:03
Desculpe-me, cometi um erro grave nessa passagem:
![\frac{4\sqrt[]{x}}{x} \frac{4\sqrt[]{x}}{x}](/latexrender/pictures/eca84e86baebb8e001f2cf1db8502816.png)
, não poderia ter colocado zero, pois temos uma indeterminação do tipo infinito/infinito.
-
AlbertoAM
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qui Nov 11, 2010 15:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Seg Jun 13, 2011 18:26
AlbertoAM escreveu:Desculpe-me, cometi um erro grave nessa passagem:
![\frac{4\sqrt[]{x}}{x} \frac{4\sqrt[]{x}}{x}](/latexrender/pictures/eca84e86baebb8e001f2cf1db8502816.png)
, não poderia ter colocado zero, pois temos uma indeterminação do tipo infinito/infinito.
Note que

.
Além disso, a forma mais simples de resolver

é dividindo tanto o numerador quanto o denominador por

.
Ou seja, temos que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por AlbertoAM » Seg Jun 13, 2011 18:32
Caramba, que confusão que eu fiz.Bem mais direta sua resolução, legal.
-
AlbertoAM
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qui Nov 11, 2010 15:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Claudin » Seg Jun 13, 2011 22:00
Fico bem mais simples mesmo Luiz
Mas acho que a maioria iria pensar em multiplicar pelo conjugado.
Obrigado pela dica.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Seg Jun 13, 2011 22:02
![\lim_{x\rightarrow+\infty}\frac{4\sqrt[]{x}}{x}= 0 \lim_{x\rightarrow+\infty}\frac{4\sqrt[]{x}}{x}= 0](/latexrender/pictures/9b0f925607ea7c31390567fecaf35737.png)
Mas esse pensamento seu (Alberto) esta certo não está não?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por AlbertoAM » Ter Jun 14, 2011 07:39
Claudin escreveu:![\lim_{x\rightarrow+\infty}\frac{4\sqrt[]{x}}{x}= 0 \lim_{x\rightarrow+\infty}\frac{4\sqrt[]{x}}{x}= 0](/latexrender/pictures/9b0f925607ea7c31390567fecaf35737.png)
Mas esse pensamento seu (Alberto) esta certo não está não?
Está certo, eu é que fiz confusão.
-
AlbertoAM
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qui Nov 11, 2010 15:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Claudin » Ter Jun 14, 2011 10:35
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5003 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4323 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4575 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4081 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2660 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.