• Anúncio Global
    Respostas
    Exibições
    Última mensagem

essa P.A est correta?

essa P.A est correta?

Mensagempor Dalila » Qua Nov 19, 2008 14:09

Numa P.A de dez termos o ultimo e igual a 22 e a razao e igual a dois.Determine o primeiro termo e a soma.

n=1,an=22,r=2
an=a1+(n-1)xr
22=a1+(10-1)x2
22=a1+a1+20-2
22=a1+18
a1=20-18
a1=4
Dalila
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Nov 14, 2008 14:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: essa P.A est correta?

Mensagempor Neperiano » Qui Nov 20, 2008 16:13

Ola

Esta correta sim

Até
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: essa P.A est correta?

Mensagempor Molina » Sáb Nov 22, 2008 17:42

Boa tarde, Dalila.

Só fazendo uma breve correção: o n é igual a 10.
Dalila escreveu:n=1,an=22,r=2

Mas acredito que foi erro de digitação, já que você colocou corretamente na fórmula.

:-D

Já a segunda questão do problema (soma) você deve utilizar a Fórmula da Soma de uma PA:
{S}_{n}=\frac{({a}_{1}+{a}_{n}).n}{2}

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: essa P.A est correta?

Mensagempor admin » Seg Nov 24, 2008 00:37

Olá.
Apenas completando a correção (também acredito ter sido um descuido na edição):

22 = a_1+(10-1)\cdot 2

22 = a_1+\xcancel{a_1}+20-2

22 = a_1 +18

a_1 = \xcancel{20}-18

a_1 = 22-18

a_1 = 4


Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59