• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda para encontrar o "u" na integral

Ajuda para encontrar o "u" na integral

Mensagempor vmouc » Sex Jun 10, 2011 15:25

Boa tarde,

Pessoas,

Preciso de uma juda urgente para encontrar o "u" para substituição na integral.(urgente).
\int_{}^{}{sec}^{2}x\left({cos}^{3}x + 1 \right)

To com dificuldade para fazer a substituição correta.
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Ajuda para encontrar o "u" na integral

Mensagempor vmouc » Sex Jun 10, 2011 15:49

Minha tentativa:
\int_{}^{}{u}^{-2}\left({u}^{3}+1 \right)

para u= cos x
du=sen x dx
\int_{}^{}u+{u}^{-2}du

\int_{}^{}udx\int_{}^{}{u}^{-2}du\int_{}^{}cos + \int_{}^{}\frac{1}{{cos}^{2}}x sen x dx

senx +tg x sec x +c
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Ajuda para encontrar o "u" na integral

Mensagempor LuizAquino » Sex Jun 10, 2011 19:11

Dica

\sec^2 x(\cos^3 x + 1) = \cos x + \sec^2 x
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda para encontrar o "u" na integral

Mensagempor vmouc » Sáb Jun 11, 2011 21:05

Acho que consegui (sem u).
\int_{}^{}\frac{1}{{cos}^{2}x}\left({cos}^{3}x + 1 \right)\Rightarrow \frac{{cos}^{3}x}{{cos}^{2}x}+ sec^2x
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.