• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como descobrir um vetor normal ao plano

Como descobrir um vetor normal ao plano

Mensagempor Thiago Silveira » Qua Jun 08, 2011 23:26

Oi pessoal, como vão.
To estudando Geometria Analítica na facul e to com dificuldade de descobrir um vetor normal a um plano dado. Como fazer isso se eu tiver a equação vetorial de um plano? Eu li alguma coisa sobre colocar a equação na forma geral e assim pegar os coeficientes dela.
Ex: 2x+5y+z+2=0

aí o vetor seria:

(2,5,1)

É isso mesmo ou tem outro modo?

Até mais e obrigado desde ja
Thiago Silveira
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Ago 15, 2010 17:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Como descobrir um vetor normal ao plano

Mensagempor LuizAquino » Qui Jun 09, 2011 23:18

Dado um ponto P do plano e dois vetores linearmente independentes paralelos a ele, sabemos que a equação vetorial desse plano será dada por: X = P + t\vec{u} + m\vec{v}, sendo t e m números reais. Os vetores \vec{u} e \vec{v} são chamados de vetores diretores ou vetores base do plano.

Por outro lado, sabemos que um vetor normal ao plano é aquele que é ortogonal a todos os vetores paralelos a esse plano. Isto é, se \vec{n} é um vetor normal ao plano dado pela equação anterior, então \vec{n}\perp \vec{u} e \vec{n}\perp \vec{v} .

Por fim, sabemos que um possível vetor que é ortogonal ao mesmo tempo a outros dois vetores é dado pelo produto vetorial entre eles.

Ou seja, considerando aquela equação vetorial, podemos tomar que um vetor normal ao plano será dado por: \vec{n} = \vec{u}\times\vec{v} .

Exemplo
Seja o plano \pi \,:\, X = (1,\,1,\,-9) + t(-2,\,-1,\,9) + m(-1,\,-1,\,7) .

Um vetor normal a esse plano é:
\vec{n} = (-2,\,-1,\,9)\times (-1,\,-1,\,7) = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 9 \\ -1 & -1 & 7\end{vmatrix} = 2\vec{i} + 5\vec{j} +\vec{k} = (2,\,5,\,1) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?