• Anúncio Global
    Respostas
    Exibições
    Última mensagem

primeiro da P.A.?

primeiro da P.A.?

Mensagempor crfsatisfaction » Qui Jun 09, 2011 00:59

E ai pessoal,tentei fazer uma questao de P.A e nao consegui terminar,cheguei em um sistema mas não sei se esta correto
A questa é a seguinte:
Se a soma dos 6 primeiros termos de uma P.A.é 21 e o sétimo termo é o triplo da soma do terceiro com o quarto termo,então o primeiro termo desta progressão é:
primerira informação:
a1+a2+a3+a4+a5+a6=21
a1+a1+r+a1+2r+a1+3r+a1+4r+a1+5r=21
6a1+15r=21
segunda informação:
a7=3(a3+a4)
a1+6r=3(a1+2r+a1+3r)
a1+6r=3(2a1+5r)
a1+6r=6a1+15r
a1+6r-6a1-15r=0
-5a1-9r
E apareceu este sistema:
6a1+15r
-5a1-9r
Apartir dai nao consegui resolver mas mesmo assim ta estranho,gostaria que alguem me ajudasse.
A resposta é -9
crfsatisfaction
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Jun 09, 2011 00:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em letras portugues/ingles
Andamento: cursando

Re: primeiro da P.A.?

Mensagempor FilipeCaceres » Qui Jun 09, 2011 10:44

Temos que:
S_6=\frac{(a_1+a_6)6}{2}=21
a_1+a_6=21

3(a_1+a_4)=a_7

Mas como a soma dos termos equidistantes dos extremos são iguais,temos
a_1+a_6 = a_3+a_4

Logo,
a_7=21

Então,
S_7=21+a_7=42

S_7=\frac{(a_1+a_7)7}{2}=42

a_1+21=12

\boxed{a_1=-9}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: primeiro da P.A.?

Mensagempor crfsatisfaction » Sex Jun 10, 2011 00:59

muito obrigado, me ajudou bastante,nao sabia da propriedade dos termos equidistantes,sua colaboração foi significativa
abraço
crfsatisfaction
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Jun 09, 2011 00:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em letras portugues/ingles
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}