A questão fala o seguinte: Ela começa afirmando que em uma fazenda precisará ser feito o transporte de sacos de cimento. Em seguida o autor fornece duas disposições diferentes de cavalos (que transportarão os sacos) em função dos sacos de cimento, o que pelo que entendi resultará em um sistema mais para frente. Eu particularmente, fiz as seguintes considerações:


Nº 1 - Na primeira disposição, o autor afirma que: caso colocados 2 (dois) sacos de cimento (Y) em cada cavalo (X) restarão 9 (nove) sacos de cimento não transportados.
- Bom, eu para chegar a primeira equação, que até onde ví está correta, pensei em subtrair o número de sacos do número de cavalos multiplicado pelo numero de sacos que cada um levará. Em resumo, pensei isto para a afirmação Nº 1:

Nº 2 - Já na segunda disposição, o autor afirma que caso colocados 3 (três) sacos de cimento (Y) em cada cavalo (X) restarão 3 (três) cavalos sem carga alguma.
- O problema mora aqui: não consegui equacionar está segunda afirmação.
RESULTADOS (s/ desenvolvimento, que é o que quero entender)
Cavalos = 18
Sacos = 45



Valeu, abraços, aguardo.














![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.