• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros criticos

Numeros criticos

Mensagempor aline_n » Qua Jun 01, 2011 20:14

como acho o numero critico dessa funcao??

f(x)=x^5-2x^3+t-12

Estou com dificuldade devido a letra t aparecer.....
aline_n
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Abr 28, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Numeros criticos

Mensagempor carlosalesouza » Qua Jun 01, 2011 22:30

não deixe ela te assustar.... rs

A não ser que t represente um termo de x, basta fazer a derivação... como t é um monômio de grau 1, sua derivada será 1...

Então, a derivada ficará:

f'(x) = 5x^4 - 6x^2 +1

De repente eu to falando bobagem... hehehehe

Mas creio que os números críticos serão as raizes desse polinômio...

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Numeros criticos

Mensagempor guermandi » Qui Jun 02, 2011 10:57

Eu acho que a função eh função apenas de x
quando vc deriva em relação a x , nao pode derivar o t tb

t deve ser um parametro e assim a resposta fica em função de t
guermandi
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Jun 01, 2011 10:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Numeros criticos

Mensagempor carlosalesouza » Qui Jun 02, 2011 11:45

Com certeza... sendo t uma variável em função de x, ou seja, t(x), precisaríamos encontrar a derivada de t...

Novamente, posso estar falando bobagem... derivando passo a passo:

\\
y = x^5 -2x^3 +t - 12\\
dy = 5x^4 dx - 6x^2 dx + dt\\
dy - dt = dx(5x^4-6x^2)\\
\frac{dy}{dx}-\frac{dt}{dx} = 5x^4 - 6x^2\\
\frac{dy}{dx}=5x^4-6x^2+\frac{dt}{dx}

Ou seja, a derivada de y em função de x é 5x^4-6x^2 somado à derivada de t em função de x...

Luiz!!!! Dá uma LUZ!!! heheheh

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Numeros criticos

Mensagempor LuizAquino » Qui Jun 02, 2011 15:39

É necessário saber qual é o texto do exercício na íntegra.

Do jeito que está, sem qualquer informação adicional, como a variável independente da função é x (já que a função está escrita como f(x)), então t deve ser considerado como uma constante (isto é, um número qualquer que não depende de x).

Desse modo, a função f(x)=x^5 - 2x^3 + t - 12 tem derivada dada por f^\prime(x) = 5x^4 - 6x^2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Numeros criticos

Mensagempor carlosalesouza » Qui Jun 02, 2011 18:33

De fato, sendo t um valor independente, ele vai deslocar o valor de y, não de x... então, o x crítico será sempre o mesmo... ou seja, as 4 raizes reais da derivada...
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D