por liviabgomes » Qua Jun 01, 2011 15:14
Calcular a integral definida:

sen(x) cos²(x) dx=
a minha dúvida é: integral definida pode ser resolvida pelo método da substituição? Ou tenho que tentar resolver simplificando as fórmulas de seno e cosseno? Pelas transformações das fórmulas trigonométricas eu não consigo resolver. Podem me ajudar???
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por carlosalesouza » Qua Jun 01, 2011 16:30
vamos lá...

O que precisamos é integrar

vamos manipular seguindo as identidades trigonométricas...
Por favor, o Felipe que me corrija, pq trigonometria é a praia dele... hehhehehehe
![\\
sen(x).cos^2(x)\\
\left [sen(x).cos(x)\right ].cos(x)\\
\left [ \frac{1}{2}sen(2x)\right].cos(x)\\
\frac{1}{2}[sen(2x).cos(x)]\\
\frac{1}{2}\left[\frac{1}{2}(sen(x+2x)-sen(x-2x))\right ]\\
\frac{1}{4}[sen(3x)-sen(-x)]\\
\frac{1}{4}[sen(3x)+sen(x)] \\
sen(x).cos^2(x)\\
\left [sen(x).cos(x)\right ].cos(x)\\
\left [ \frac{1}{2}sen(2x)\right].cos(x)\\
\frac{1}{2}[sen(2x).cos(x)]\\
\frac{1}{2}\left[\frac{1}{2}(sen(x+2x)-sen(x-2x))\right ]\\
\frac{1}{4}[sen(3x)-sen(-x)]\\
\frac{1}{4}[sen(3x)+sen(x)]](/latexrender/pictures/a3553111601b4164756c1f342ca143a5.png)
Agora, integrando:
![\\
\displaystyle \int_0^\frac{\pi}{2}[sen(3x)+sen(x)]dx \\
\displaystyle \int_0^\frac{\pi}{2}[sen(3x)+sen(x)]dx](/latexrender/pictures/552ebeee3f2d9e58580e76e20ea4868f.png)
Como a integral de sen(x) é -cos(x), então:
![\\
\left [-cos(3x)-cos(x)\right ]_0^\frac{\pi}{2}\\
\left [-cos\left(3.\frac{\pi}{2}\right )-cos\left(\frac{\pi}{2}\right)\right ]-[-cos(3.0)-cos(0)]\\ \\
\left [-cos(3x)-cos(x)\right ]_0^\frac{\pi}{2}\\
\left [-cos\left(3.\frac{\pi}{2}\right )-cos\left(\frac{\pi}{2}\right)\right ]-[-cos(3.0)-cos(0)]\\](/latexrender/pictures/88d788c966f6b5ee276e788add593252.png)
bem...

Assim:
![\\
\left [-(0)-(0)\right ]-\left [-(1)-(1)\right ]\\
0-(-2) = 2 \\
\left [-(0)-(0)\right ]-\left [-(1)-(1)\right ]\\
0-(-2) = 2](/latexrender/pictures/9ff3f3fe5b993d4ab4f3b3d746b34351.png)
Como disse, espero o amparo dos caros colegas mais familiarizados com a trigonometria pra ver se não cometi algum deslize... mas, me parece certo...
Um grande abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por LuizAquino » Qua Jun 01, 2011 16:36
Nesse exercício em específico, a solução é mais simples.
Tomando-se u = cos x, temos que du = - sen x dx.
Desse modo, temos que:

.
Observaçãocarlosalesouza,
Lembre-se que

, com
a real não nulo.
Além disso, você esqueceu da constante 1/4 no cálculo da integral.
Editado pela última vez por
LuizAquino em Qua Jun 01, 2011 18:46, em um total de 1 vez.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por liviabgomes » Qua Jun 01, 2011 17:54
qual das duas explicações aplica-se melhor a integral definida? a primeira ou a segunda?
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por liviabgomes » Qua Jun 01, 2011 17:58
fiz pela segunda explicação e deu -1/3. está correto?
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por carlosalesouza » Qui Jun 02, 2011 08:53
Livia,
Certa está a resposta do Luiz... rs
Não teima com o Luiz...
Me ignora... hehehhee
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por carlosalesouza » Qui Jun 02, 2011 12:38
Hehehe...
Muito obrigado, Luiz,...
De fato, eu me perdi no acúmulo de procedimentos que fiz... rs e me perdi em alguns detalhes que comprometeram o resultado...
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4348 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3684 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
-
- [integral] integral definida por partes
por gabriel feron » Seg Mar 11, 2013 00:48
- 2 Respostas
- 3077 Exibições
- Última mensagem por gabriel feron

Seg Mar 11, 2013 18:19
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Derivar integral definida
por troziinho » Ter Mar 31, 2015 20:26
- 0 Respostas
- 2501 Exibições
- Última mensagem por troziinho

Ter Mar 31, 2015 20:26
Cálculo: Limites, Derivadas e Integrais
-
- Integral definida
por exploit » Ter Set 07, 2010 19:17
- 4 Respostas
- 3633 Exibições
- Última mensagem por exploit

Qua Set 08, 2010 19:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.