• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mais um limite

Mais um limite

Mensagempor Psilocybe » Ter Mai 31, 2011 20:33

Tenho esse limite:
\[\lim_{x\to 0+}{\left( \frac{\mathrm{sen}\left( x\right) }{x}\right) }^{x-1}\]

Chutei valores perto de 0+, e o limite resultou perto de 1. Será que ta certo? Isso significa que não deu indeterminação ? Não precisa aplicar nenhuma L'Hôpital ?
Psilocybe
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 04, 2011 09:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Mais um limite

Mensagempor Claudin » Ter Mai 31, 2011 21:20

Cheguei no resultado 1 também
sem utilizar regra de l'Hopital
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Mais um limite

Mensagempor carlosalesouza » Qua Jun 01, 2011 00:27

Isso é um limite notável.... note que, quando x tende a 0, o expoente tende a -1... então a função tende a

\lim_{x\rightarrow 0^+}f\left (\frac{u}{v}\right) = \left(\frac{u}{v}\right)^{-1}=\frac{v}{u}

Onde u = sen(x) e v = x... assim, o limite resulta em \lim_{x\rightarrow 0^+}\frac{x}{sen(x)}, que é um limite notável, igual a 1... logo, o limite lateral existe e é 1
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.