por -civil- » Seg Mai 30, 2011 20:31
Estou tentando resolver os exercícios de esboço de gráfico do capítulo 9 do Guidorizzi. Para conseguir esboçar o gráfico, o primeiro passo é encontrar as raízes da função.
Mas como eu calculo as raízes dessas funções cúbicas?


Tentei substituir por alguns números (sem êxito), mas acho que esse não é o melhor método.
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Claudin » Seg Mai 30, 2011 20:38
Faz pesquisa de raízes!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Seg Mai 30, 2011 20:56
Na verdade, você vai precisar calcular as raízes da equação f'(x) = 0 e f''(x) = 0.
Para ambas as funções do exercício, note que a primeira equação será polinomial do 2° grau. Já a segunda equação será polinomial do 1º grau.
SugestãoPara saber como resolver equações polinomiais de 3° grau genéricas, procure pelo método de Cardano. Leia mais a respeito:
Equação cúbicahttp://pt.wikipedia.org/wiki/Equa%C3%A7 ... %C3%BAbica
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por -civil- » Seg Mai 30, 2011 21:20
As raízes de

e

eu consegui encontrar. Vou ler sobre esse método de Cardano e ver se eu consigo encontrar as raízes. Uma solução alternativa que eu encontrei foi considerar três raízes dentro de três intervalos diferentes. No caso de

, considerei que as raízes são a, b, c e que



Daí,

é negativa em ]

, a] e em [b, c]
e

é positiva em [a,b] e em [c,

[
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divisão de polinômios
por manuoliveira » Dom Nov 14, 2010 14:00
- 1 Respostas
- 2504 Exibições
- Última mensagem por VtinxD

Seg Nov 15, 2010 01:13
Polinômios
-
- divisão de polinomios
por theSinister » Seg Mai 23, 2011 17:11
- 6 Respostas
- 3674 Exibições
- Última mensagem por theSinister

Seg Mai 23, 2011 22:34
Álgebra Elementar
-
- Divisão de Polinômios
por Claudin » Qua Ago 03, 2011 20:25
- 3 Respostas
- 2042 Exibições
- Última mensagem por Claudin

Qui Ago 04, 2011 15:46
Polinômios
-
- Divisão de polinômios
por Gaules » Qua Out 19, 2011 16:47
- 0 Respostas
- 1337 Exibições
- Última mensagem por Gaules

Qua Out 19, 2011 16:47
Polinômios
-
- Divisão de polinômios
por Pri Ferreira » Ter Mai 08, 2012 21:28
- 1 Respostas
- 1308 Exibições
- Última mensagem por DanielFerreira

Ter Mai 08, 2012 23:02
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.