• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Perímetro do triângulo

Perímetro do triângulo

Mensagempor maria cleide » Sáb Mai 28, 2011 16:49

O perímetro de um triângulo ABC é igual a 45cm. A bissetriz interna do ângulo  divide o lado oposto em dois segmentos de medidas iguais a 10cm e 8cm. Qual a medida do menor lado desse triângulo?
A-( ) 10cm
B-( ) 11cm
C-( ) 12cm
D-( ) 14cm

Só sei que o lado maior é o que mede 18cm, mas não consigo desenvolver o problema.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Perímetro do triângulo

Mensagempor MarceloFantini » Sáb Mai 28, 2011 17:55

Se a bissetriz divide o lado oposto em segmentos de medidas iguais a 10 cm e 8 cm, respectivamente, então temos que os lados correspondentes são proporcionais a eles, logo: 10k+8k+18 = 45 \Rightarrow 18k = 27 \Rightarrow k = \frac{3}{2}. Portanto o menor lado é 8k = 8 \cdot \frac{3}{2} = 12. Resposta C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Perímetro do triângulo

Mensagempor maria cleide » Dom Mai 29, 2011 19:42

Não entendi porque você chegou na conclusão que os lados correspondentes são proporcionais e que os valores destes lados são 10K e 8K.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Perímetro do triângulo

Mensagempor MarceloFantini » Dom Mai 29, 2011 19:55

Putz Maria, eu me lembro que existe um teorema chamado teorema das bissetrizes que diz isso, mas não me lembro a demonstração. Procure por ele. Peço desculpas por acabar jogando isso, mas tenho certeza que é assim.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}