• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Duvida] Derivada da Composta

[Duvida] Derivada da Composta

Mensagempor demolot » Qua Mai 25, 2011 13:04

Boa tarde a toda a comunidade tenho um pequeno problema, o exercicio é o seguinte:

Imagem

Sabendo que F é diferenciável, mostre que

?u/?y cos(x) + ?u/?x cos(y) = cos(x)*cos(y)


eu nao tenho a mais pequena ideia como isto se faz, no caderno do prof nao esta nenhuma deste tipo, eu nem sei se é bem pela regra da derivaçao da composta, alguem me pode dar umas orientaçoes, gostava so de orientaçoes nao da resposta muito obrigado desde ja
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando

Re: [Duvida] Derivada da Composta

Mensagempor LuizAquino » Qua Mai 25, 2011 23:42

Qual é exatamente o texto original do exercício?

A função u não seria u(x,\,y) = \sin (x) + F(\sin(y) - x) ?

De qualquer modo, para resolver um exercício desse tipo você precisa saber calcular derivadas parciais além de saber a Regra da Cadeia para funções com várias variáveis. Você já estudou esses conteúdos?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Duvida] Derivada da Composta

Mensagempor demolot » Qui Mai 26, 2011 07:04

sim ja dei essa materia, o enunciado é so este:

4. Considere a seguinte função
u = sin x + F(siny-sinx) .
Sabendo que F é diferenciável, mostre que
\frac{\partial u}{\partial y}cos x + \frac{\partial u}{\partial x}siny = cos y+sin x


sera que tem alguma coisa a ver com a diferencibilidade da funçao F?
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando

Re: [Duvida] Derivada da Composta

Mensagempor LuizAquino » Qui Mai 26, 2011 12:29

Note que o exercício está diferente nas duas mensagens que você enviou!

De qualquer modo, eu sugiro que você arrume o exercício da seguinte maneira. Considere que w = \sin y -\sin x. Se a segunda expressão para a função u é a correta, então você ficará com: u = \sin x + F(w) .

Agora, lembre-se que:

\frac{\partial u}{\partial y} = \frac{\partial [\sin x + F(w)]}{\partial y} = \frac{\partial (\sin x)}{\partial y} + \frac{d F}{dw}\frac{\partial w}{\partial y} ,

\frac{\partial u}{\partial x} = \frac{\partial [\sin x + F(w)]}{\partial x} = \frac{\partial (\sin x)}{\partial x} + \frac{d F}{dw}\frac{\partial w}{\partial x} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Duvida] Derivada da Composta

Mensagempor demolot » Qui Mai 26, 2011 12:55

muito obrigado pela resposta, esta correcto :)
fiz as contas e deu a demonstração pedida
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}