• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas Implicitas

Derivadas Implicitas

Mensagempor Maykids » Seg Mai 23, 2011 18:25

por favor vejam o que eu estou fazendo de errado nessa conta.

f(x) = xy
estou usando a regra do produto:

f'(x) = (1.y)+ (1.y')*x

f'(x) = y+y'x

y'=y/x

so que o resultado não é esse, pelo menos no wolframalpha.com
la da apenas, Y
obrigado
att,
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas Implicitas

Mensagempor LuizAquino » Seg Mai 23, 2011 18:31

Vamos considerar que y é uma função de x (isto é, y = f(x)) e queremos derivar y = xy.

Temos que:
(y)' = (xy)'
y' = (x)'y + x(y)'
y' = y + xy'
y' = y/(1-x)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas Implicitas

Mensagempor Maykids » Seg Mai 23, 2011 18:51

y' = y/(1-x)

não entendi o que aconteceu nesse passo.
antes tinham dois y', agora passou a ficar so com 1.
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas Implicitas

Mensagempor LuizAquino » Seg Mai 23, 2011 18:56

Note que y' = y + xy' é o mesmo que y' - xy' = y.

O que acontece se colocarmos y' em fator comum no primeiro membro?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas Implicitas

Mensagempor Maykids » Seg Mai 23, 2011 18:59

Cara eu pensei na evidencia so que axei que estava errado, rss, muito obrigado aquino, suas aulas no youtube tambem são otimas, hahaha.
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas Implicitas

Mensagempor Maykids » Seg Mai 23, 2011 19:56

por favor veja se eu fiz certo esse exercicio:

y'=x²sen(y)
y'= 2xsen(y) + x²cos(y)y'
y'cos(y)x²= 2xsen(y)

y'=\frac{2xsen(y)}{x^2cos(y)}

=

y'=\frac{2sen(y)}{xcos(y)}

ainda:

y'=\frac{2}{x}*tg(y)
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas Implicitas

Mensagempor LuizAquino » Seg Mai 23, 2011 22:23

Do segundo para o terceiro passo está errado.

Você não colocou o termo y' em evidência de maneira correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas Implicitas

Mensagempor Maykids » Ter Mai 24, 2011 03:14

"ora" acho que esqueci do sinal de menos.
a) y = x²sen(y)

y'cos(y)x² = - 2xsen(y)

y'= -2xsen(y)/x²cos(y)

y'= -2sen(y)/xcos(y)
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas Implicitas

Mensagempor LuizAquino » Ter Mai 24, 2011 14:52

Você continua errando.

y' = 2xsen(y) + x²cos(y)y'

y' - x²cos(y)y' = 2xsen(y)

y'[1 - x²cos(y)] = 2xsen(y)

y' = [2xsen(y)]/[1 - x²cos(y)]
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas Implicitas

Mensagempor Maykids » Ter Mai 24, 2011 15:26

hmmm..é porque eu n sabia que o y q representa a funcao continua na conta eu achei qe ele desaparecia =)

obrigado de novo
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: