por leocadio » Dom Nov 02, 2008 14:29
Tenho 2 números, o primeiro é 555.657.585.960, e o segundo é 10.203.040.506.
O primeiro, dividido por 545.454.545.454 dá o resultado de 1,01870557426
O segundo, dividido por 545.454.545.454 dá o resultado de 0,01870557426
Sou leigo em matemática (sou médico) e gostaria de saber o significado, se é que há significado, de dois números tão diferentes terem como resultado, com o mesmo divisor, números idênticos nas decimais, diferindo apenas pelo 1 inteiro.
Agradeço pela atenção
Leocádio
-
leocadio
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2008 13:56
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: medicina
- Andamento: formado
por Neperiano » Dom Nov 02, 2008 14:48
Ola
Sou aluno de ensino médio.
Mas acredito que de o mesmo resultado nos decimais por ter dividido pelo mesmo numero
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por leocadio » Dom Nov 02, 2008 14:58
Você pode pegar outros números, quantos quiser, e dividi-los pelo número 545.454.545.454, jamais encontrará um resultado com as mesmas decimais!
-
leocadio
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2008 13:56
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: medicina
- Andamento: formado
por Sandra Piedade » Dom Nov 02, 2008 15:57
Olá
Fiz umas contas rápidas e concluí que por exemplo, dados 3 e 33, 3:30=0.1 e 33:30=1.1, as partes decimais também são iguais, mas finitas. Depois experimentei com valores que davam dízimas infinitas periódicas e reparei que isto se devia a que o terceiro número (545.454.545.454) é igual à diferença entre os outros dois, isto é: 545.454.545.454=555.657.585.960-10.203.040.506. De uma forma geral, quando temos dois números "a" e "b", e se a-b=d, então

concluímos assim que

,
porque d (o divisor) é igual à diferença entre os números de partida.
Se experimentar escolher dois números inteiros quaisquer a e b, calcular a sua diferença e depois dividir ambos por esse valor, concluirá que os dois quocientes têm iguais partes decimais.
Espero ter conseguido esclarecer!
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relaçoes entre conjuntos
por Zanatta » Qua Abr 24, 2013 20:42
- 0 Respostas
- 1279 Exibições
- Última mensagem por Zanatta

Qua Abr 24, 2013 20:42
Conjuntos
-
- Trigonometria (Relações entre linhas trigonométricas)
por claudia » Seg Ago 25, 2008 14:58
- 5 Respostas
- 5535 Exibições
- Última mensagem por claudia

Qua Ago 27, 2008 17:15
Trigonometria
-
- Mostrar relações binárias entre conjuntos
por danieltnaves » Sex Abr 15, 2011 14:20
- 6 Respostas
- 3170 Exibições
- Última mensagem por danieltnaves

Sex Abr 15, 2011 17:49
Álgebra Elementar
-
- Trigonometria - Relações entre razões trigonométricas
por METEOS » Seg Set 30, 2013 17:06
- 1 Respostas
- 1359 Exibições
- Última mensagem por Russman

Seg Set 30, 2013 17:41
Trigonometria
-
- [Relação entre Conjuntos] Relações de Equivalência
por andrelangoni » Qui Abr 20, 2017 23:12
- 0 Respostas
- 2130 Exibições
- Última mensagem por andrelangoni

Qui Abr 20, 2017 23:12
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.