não to conseguindo fazer de jeito nenhum esses 2 exercicios da minha lista. 1º Não entendi nada do enunciado e 2º Não consegui saber que fórmula usar.
1. Qual o número de jogadas de uma moeda necessário para assegurar uma probabilidade superior a 0,75 de se obter ao menos uma cara (K)?
2. Uma tábua de mortalidade acusa as seguintes taxas de mortalidade
(isto é, probabilidade de um indivíduo de idade
morrer antes de atingir a idade
+ 1):(tabela a seguir)
x 30 31 32 33 34 35
q 0,00213 0,00219 0,00225 0,00232 0,0024 0,00251
a) Dado um indivíduo de 30 anos, qual a probabilidade dele atingir a idade de 31 anos?
b) Para o mesmo indivíduo, qual a probabilidade de morrer antes de completar 35 anos?
POR FAVOR ME AJUDEMMM...\
Obrigadaa

, onde n é o número de vezes que vc lançar a moeda... assim, a probabilidade de ocorrer cara(k) é 



![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.