• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Seg Mai 09, 2011 20:17

Olá boa noite.

Bom, estou fazendo um trabalho no qual eu tenho que calcular o volume de um sólido de forma aproximada
(soma de Riemann) e de forma exata (integral).
Já fiz um trabalho muito semelhante a este algum tempo atrás e por este motivo acho que estou resolvendo de forma errada
já que os valores estão muito diferentes. Vamos ao meu dilema:

A função é: 5x{e}^{-\frac{x}{2}} + \frac{y.(13-y)}{8}
Sendo que:
0\leq x \leq8
0\leq y \leq12
\Delta x = \Lambda y = 1cm
Utilizando o ponto médio.

Então para a soma de Riemann fiz: f(0,5 ; 0,5) + f(0,5 ; 1,5) + f(0,5 ; 2,5) ... + f(7,5 ; 11,5).
Somando todas essas funções obtive V=582,830221 cm³

Então resolvi a integral:
\int_{0}^{12} \int_{0}^{8} 5x{e}^{-\frac{x}{2}} + \frac{y.(13-y)}{8} dxdy
\int_{0}^{12} - \frac{5x{e}^{-\frac{x}{2}}}{2} - \frac{5{e}^{-\frac{x}{2}}}{4} + \frac{13}{8}xy - \frac{x{y}^{2}}{8}
\int_{0}^{12} - 0,009157819 - 0,022894548 + \frac{5}{4} + 13y - {y}^{2}
- 0,009157819y - 0,022894548y + \frac{5}{4}y + \frac{13{y}^{2}}{2} - \frac{{y}^{3}}{3}
=374,6153716 cm³

O outro trabalho que eu resolvi, também pelo ponto médio, deu uma diferença menor que 1.
Como os valore são quase o dobro um do outro creio que algo está errado mas não sei o que.

Por favor alguém me ajuda, é muito importante!!
Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor LuizAquino » Seg Mai 09, 2011 20:56

Confira a sua solução:
\int 5x{e}^{-\frac{x}{2}} + \frac{y(13-y)}{8} dx = - 10(x + 2) e^{-\frac{x}{2}} - \frac{1}{8}(y - 13)xy + c, com c uma constante real.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 15:01

Desculpe mas não consegui lhe compreender.
Você está me falando que eu resolvi a integral em relação a x de forma errada?
Aquela resolução que você me mostrou seria a certa? Ou que a diferença dos valores é devido a "+ contante" ?

Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 15:02

Desculpe mas não consegui lhe compreender.
Você está me falando que eu resolvi a integral em relação a x de forma errada?
Aquela resolução que você me mostrou seria a certa? Ou que a diferença dos valores é devido a "+ contante" ?

Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor LuizAquino » Ter Mai 10, 2011 17:28

Note que você errou a integral em relação a x. A solução correta dessa integral é a que eu enviei anteriormente.

Além disso, note que eu enviei a solução da integral indefinida. A partir dela você precisa calcular a integral definida de 0 a 8.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 19:33

Muitíssimo obrigaaaaaaada!
Resolvi novamente e agora os valores estão bem próximos.

Muito obrigada mesmo.
Boa Noite
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)