por paula luna » Qui Mai 05, 2011 23:05
paula luna escreveu:![\lim_{x\rightarrow 0} \left[ \frac{1}{x} -\frac{1}{\left|x \right|} \right] \lim_{x\rightarrow 0} \left[ \frac{1}{x} -\frac{1}{\left|x \right|} \right]](/latexrender/pictures/7d0789122ee03df44e03d007ab9d48db.png)

NOSSA NA VERDADE TEM UMAS 15 QUESTOES QUE EU NAO CONSIGO DE UMA LISTA DE UMAS 25 , MAS SE EU BOTAR TODAS VAO ME MANDAR A M... (COM RAZAO)
Obs.: Nao pode ser por grafico ¬¬... professor nao deixa (coisa boa ja que ele nao resolveu sequer um limite indeterminado pra saber como se faz)
Tu disse pra mim postar caso ainda tivesse duvida ... pois bem vi tuas aulas (as duas que tu recomendou e mais 2 outra) achei muito boas (parabens!) e ajudou a resolver aquele segundo limite (sen x / x x-->inf ) mas a outra eu ainda nao consegui.
Talvez nao tenha esclarecido minha duvida : estou com dificuldade por causa do modulo, eu sei conceito de modulo ... porem no limite eu nao tenho ideia de como fazer!
-
paula luna
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Mai 05, 2011 21:56
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Qui Mai 05, 2011 23:21
Eu fico feliz que tenha gostado dos vídeos e que eles tenham lhe ajudado a resolver um dos exercícios.
Bem, vejamos o outro limite.
Primeiro, lembre-se que da definição de módulo temos que |x| = x, se x >= 0; |x| = -x, se x < 0.
Desse modo, vamos analisar o limite para x tendendo a 0 tanto pela esquerda quanto pela direita.
![\lim_{x\rightarrow 0^-} \left[ \frac{1}{x} -\frac{1}{|x|} \right] = \lim_{x\rightarrow 0^-} \left[ \frac{1}{x} -\frac{1}{-x}\right] = 2\lim_{x\rightarrow 0^-} \frac{1}{x} = -\infty \lim_{x\rightarrow 0^-} \left[ \frac{1}{x} -\frac{1}{|x|} \right] = \lim_{x\rightarrow 0^-} \left[ \frac{1}{x} -\frac{1}{-x}\right] = 2\lim_{x\rightarrow 0^-} \frac{1}{x} = -\infty](/latexrender/pictures/067b0cd69beeae18fa522b3e0d76916c.png)
![\lim_{x\rightarrow 0^+} \left[ \frac{1}{x} -\frac{1}{|x|} \right] = \lim_{x\rightarrow 0^+} \left[ \frac{1}{x} -\frac{1}{x}\right] = \lim_{x\rightarrow 0^-} 0 = 0 \lim_{x\rightarrow 0^+} \left[ \frac{1}{x} -\frac{1}{|x|} \right] = \lim_{x\rightarrow 0^+} \left[ \frac{1}{x} -\frac{1}{x}\right] = \lim_{x\rightarrow 0^-} 0 = 0](/latexrender/pictures/b2f3c0ba4a7cc2fe81820c0d516e95b4.png)
Como os limites laterais são diferentes, temos que o limite original não existe.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Dúvida ANOVA] Uma dúvida sobre a estatística correta
por gustamfar » Ter Mai 22, 2018 18:19
- 0 Respostas
- 10916 Exibições
- Última mensagem por gustamfar

Ter Mai 22, 2018 18:19
Estatística
-
- Dúvida PA
por Cleyson007 » Dom Jun 01, 2008 01:01
- 2 Respostas
- 10654 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 17:38
Progressões
-
- Dúvida
por miguelbaptista » Sex Jan 09, 2009 03:29
- 8 Respostas
- 12258 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 17:13
Logaritmos
-
- dúvida
por gdarius » Dom Ago 16, 2009 00:09
- 1 Respostas
- 3059 Exibições
- Última mensagem por Felipe Schucman

Dom Ago 16, 2009 02:35
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida!!
por GABRIELA » Qui Set 17, 2009 18:19
- 5 Respostas
- 5523 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 17:38
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.