, qual é o valor de p+q?Minha primeira dúvida, o que ele quer dizer com números "relativamente primos", números próximos?
No gabarito ele fala que a resposta de p+q é igual a 19, mas se substituirmos não chegamos a esse valor.
2-) X=
, prove que x é um número real.Esse realmente não sei por onde começar.



logo 12 + 7 = 19.
. Podemos elevar ambos os lado ao quadrado.
--->
, agora perceba que no segundo membro da equação temos seis somado a '' X ''. Ficamos com
, ai é só passar o seis e o x para o primero membro e resolver a equação do segundo grau. Você encontrará duas raízes reais, uma negativa e outra positiva, mas lembrando que
... logo só sobrará a raiz positiva que é 3; provando assim que x é número real.

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)