• Anúncio Global
    Respostas
    Exibições
    Última mensagem

area do setor circular

area do setor circular

Mensagempor stanley tiago » Seg Mai 02, 2011 16:35

determine a area das superfícies assinaladas da figura:

a) ABCD é um quadrado , e r = 8   \sqrt[]{2}
sfds.GIF
sfds.GIF (2.66 KiB) Exibido 2351 vezes



Eu tentei de alguma formas aqui só q nao deu muito certo

\alpha=\frac{360}{4}  -- \alpha=90 -- r=8\sqrt[]{3} -- {l}_{dc}= \frac{\alpha.r.\pi}{180}

então {l}_{dc}= \frac{90.8\sqrt[]{2}.\pi}{180} -- {l}_{dc}= 4\pi\sqrt[]{2}

{A}_{s}= \frac{{l}_{dc}.r}{2} -- {A}_{s}= \frac{4\pi\sqrt[]{2}.8\sqrt[]{2}}{2} -- {A}_{s}= 32\pi


Então pessual foi até aqui que eu consegui tirar do exercício , apartir daqui eu nao sei o que fazer !

Ah , a resposta certa é 145,92 cm²
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: area do setor circular

Mensagempor TheoFerraz » Seg Mai 02, 2011 17:02

Pense o seguinte.
O diametro da circunferencia é a diagonal do quadrado.

A diagonal dum quadrado de lado \alpha é sempre \alpha\sqrt[]{2}.

No seu caso. a diagonal é duas vezes o raio (diametro) entao fica que o lado do quadrado é

\alpha\sqrt[]{2}} = 2\times8\sqrt[]{2}

\alpha = 2\times8 = 16

Dai voce percebe que seu quadrado tem lado 16.

Se voce quer a area da parte preta na figura. é simples

Area da circunferencia - area do quadrado = area desejada


Portanto:

{A}_{c} = \pi\times{r}^{2}

e

{A}_{q} = {\alpha}^{2}

Ai voce faz a conta pans, só não vou falar muito pq acabei de me tocar que nao sei direito o que o problema pede, se for a area preta entao faça isso, {A}_{circunferencia} - {A}_{quadrado} = {A}_{desejada}

Mas de qualquer jeito, use aquela jogada da diagonal do quadrado ser sempre \alpha\sqrt[]{2}. E do diametro ser a diagonal do quadrado. Saindo dai vc tem informação até demais

Espero ter ajudado, Abraço
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: area do setor circular

Mensagempor stanley tiago » Seg Mai 02, 2011 17:22

É deu certo sim mlk , é isso mesmo
TheoFerraz escreveu:{A}_{circunferencia} - {A}_{quadrado} = {A}_{desejada}


vlw obrigado pela ajuda :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: area do setor circular

Mensagempor FilipeCaceres » Seg Mai 02, 2011 19:51

quadrilatero.png
quadrilatero.png (6.35 KiB) Exibido 2340 vezes


Só para complementar.

Dado um quadrilátero qualquer, podemos descobrir qual a sua área sabendo o valor das diagonais e o ângulo entre elas.
A=\frac{p.q.sen \alpha}{2}

No exercício temos um quadrado, e portanto as diagonais são iguais e com valor 2r ,pois está inscrita em uma circunferência, e o ângulo entre elas é de 90, desta forma temos,
A_{quadrado}=\frac{2r.2r.sen90}{2}=2r^2

O resto é semelhante,
A_{desejada}=A_{circunferencia} - A_{quadrado}
A_{desejada}=\pi r^2-2r^2
A_{desejada}=r^2(\pi -2)

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}