• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites de sequencias.

Limites de sequencias.

Mensagempor TheoFerraz » Dom Mai 01, 2011 12:49

Bom, eu estava resolvendo uma lista de limites de sequencias que meu professor passou, e me deparei com dois problemas que nao faço ideia de como resolve-los:

01. Prove que se 0 < a < 1, entao:
\lim_{n\rightarrow\infty}\sum_{k=1}^{n}{a}^{k}=\frac{a}{1-a}.

e

02. Calcule
\lim_{n\rightarrow\infty}\frac{1}{{n}^{3}}\sum_{k=1}^{n}{k}^{2}.

Não soube resolver esses, mas consegui resolver o resto da lista toda... E me ocorreu que se eu conseguisse um modo de determinar os termos gerais de sequencias, sequencias que somam n termos nesses casos, eu conseguiria resolve-los mais facilmente. Basicamente é o que se pede no primeiro exercicio, certo. Mas o que eu imaginava era algo como, um termo geral em função de n que quando eu calculasse o limite desse termo geral tal que n tendesse ao infinito eu obteria o mesmo resultado da prova 01.
Acredito que tenha ficado pouco claro, vou tentar esclarecer um pouco mais
se eu tenho a sequencia (no caso da primeira) com n = 3 por exemplo. eu tenho os numeros: a, a², e a³... a soma a + a² + a³, se eu tiver n = 4 terei um termo a mais, em fim, se eu tivesse o termo geral para qualquer 'n' eu poderia calcular o limite com o n tendendo ao infinito e seria a mesma coisa que calcular o primeiro exercicio.

Bom, essa é a minha duvida, eu tentei pesquisar na internet nao obtive resultado (tbm por que minha duvida é dificil de ser colocada em palavras chave)

Muitíssimo obrigado!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limites de sequencias.

Mensagempor LuizAquino » Seg Mai 02, 2011 00:15

Achar uma expressão explícita para o resultado de um somatório nem sempre é simples.

Entretanto, nesse dois casos temos que:
(i) \sum_{k=1}^{n}{a}^{k}=\frac{a(a^n-1)}{a-1}, com a um número real diferente de 1 -- Nesse caso, temos a soma do n termos de uma P.G..

(ii) \sum_{k=1}^{n}{k}^{2} = \frac{n(n+1)(2n+1)}{6} -- Nesse caso, há uma demonstração dessa identidade no apêndice sobre somatórios no livro de Cálculo de James Stewart.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)