por joaofonseca » Sáb Abr 30, 2011 13:01
Seja a seguinte função polinomial:

Sabemos que pelo teorema das raizes racionais existe um número racional

irredutivel. Sabemos também que
p pode ser um dos fatores de

e
q pode ser um dos fatores de

.
Assim ficamos com uma lista das possíveis raízes racionais deste polinomio:

Graficamente a função tem raiz real em 0,866. Ora nenhuma destas frações resulta em 0,866. Posso então concluir que a(s) raizes desta função não são racionais!
Existe alguma técnica algébrica de decompor este polinomio de grau 5?
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por FilipeCaceres » Sáb Abr 30, 2011 13:20
Seja a seguinte função polinomial:

Poste o enunciado completo.
Você deseja apenas fatorar essa função?
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por joaofonseca » Sáb Abr 30, 2011 13:48
O enunciado é:
"Encontre os possíveis zeros utilizando o Teorema das Raizes Racionais."
Como eu não encontrei nenhum utilizando este teorema, deduzi que os zeros ou são irracionais ou imaginários. Pensei que decompondo este polinomio em polinomios de 2º grau, seria facíl encontrar os zeros, mesmo que imaginários. A minha dificuldade está mesmo em decompor o polinomio (grau 5).
A ajuda que eu estou pedindo é na decomposição do polinomio, de forma a encontrar as raizes, sejam irracionais ou imaginárias.
Obrigado
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DÚVIDA] Potências de expoentes racionais e raízes.
por invader_zim » Ter Fev 12, 2013 11:31
- 3 Respostas
- 2200 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 12:24
Aritmética
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7990 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- [Radiciação] Raízes dentro de raízes
por mottasky » Ter Set 13, 2011 22:00
- 2 Respostas
- 2439 Exibições
- Última mensagem por mottasky

Qui Set 15, 2011 15:52
Álgebra Elementar
-
- Numeros racionais
por silvia fillet » Qua Out 19, 2011 20:06
- 369 Respostas
- 298284 Exibições
- Última mensagem por Estrela_36

Sáb Dez 03, 2011 17:41
Equações
-
- números: racionais
por Victor Gabriel » Dom Mai 12, 2013 14:35
- 0 Respostas
- 2975 Exibições
- Última mensagem por Victor Gabriel

Dom Mai 12, 2013 14:35
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.