• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A. resolução de problema

P.A. resolução de problema

Mensagempor aliceit » Ter Abr 26, 2011 22:52

Uma indústria de produtos natalinos encerrou o ano de 2006, com um estoque de 250 peças. Em janeiro de 2007, a indústria concedeu férias coletivas a seus funcionários e a partir de fevereiro recomeçou sua produção. Com base no texto, considerando que essa indústria, em fevereiro, produziu 550 produtos, que a cada mês essa produção cresceu em progressão aritmética e que em novembro de 2007 o estoque passou a ter 26000 itens, é correto afirmar que o número de peças produzidas em agosto foi de..?

Eu tentei a soma dos termos da P.A., juntando primeiro o 250 com o 550 (produção de fevereiro):
S10 = a1 + a10 * 10/5
26.000 = 800 + a10 * 10/5
a10 = 4400


depois eu coloquei na forma do termo geral:
a10 = a1 + 9R
4400 = 800 + 9R
R = 400


então, apliquei no termo geral para saber o mês de agosto:
a7 = a1 + 6R
a7 = 800 + 6*400

a resposta é 3250!, mas só acho 3200
por favor, me ajudem!!
aliceit
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 26, 2011 21:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A. resolução de problema

Mensagempor MarceloFantini » Qua Abr 27, 2011 00:36

Você errou aqui: primeiro, novembro é a_9 e não a_{10}; segundo, quando você trabalha com peças produzidas, você não conta o estoque do ano 2006 - você quer apenas as peças produzidas a cada mês, e as peças de 2006 não foram produzidas em 2007 (óbvio, sim). Refaça suas contas e chegará ao resultado certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: P.A. resolução de problema

Mensagempor aliceit » Qua Abr 27, 2011 10:31

olá!

obrigada por dispensar seu tempo para me ajudar.
eu tentei fazer o que você disse: novembro como a9, e desprezei o estoque de 2006.
no entanto a conta ficou muito esquisita e não cheguei ao resultado.

vou continuar tentando,

valeu!
aliceit
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 26, 2011 21:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A. resolução de problema

Mensagempor MarceloFantini » Qua Abr 27, 2011 19:46

Cacete (desculpe), cometi um erro e ainda por cima tive um tremendo trabalho refazendo meus passos pra descobrir como cheguei na resposta. Aqui vai:

Primeiro, você estava certo. É a_{10} mesmo, perdão pelo erro!

Segundo, a resolução segue assim:

A soma de todos as produções JUNTAMENTE com o estoque antigo deve somar 26000, logo:

S_{10} = \frac{(a_1 + a_{10})10}{2} + 250 \Rightarrow 26000 = (550 + a_{10})5 + 250

\Rightarrow 25750 = (550 + a_{10})5 \therefore a_{10} = 4600

Usando a definição de termo geral de P.A.:

a_{10} = a_1 + 9r \Rightarrow 4600 = 550 + 9r

\therefore r = 450

Calculando o número de peças em agosto:

a_7 = a_1 +6r \Rightarrow a_7 = 550 + 6 \cdot 450

\therefore a_7 = 3250
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: P.A. resolução de problema

Mensagempor aliceit » Qua Abr 27, 2011 23:22

Fantini,
super agradeço a sua colaboração!
hoje a noite consegui resolver a questão, e quando loguei aqui para te mostrar vi a surpresa!
digamos que a sua resolução ficou mais organizada que a minha, hauahuahua.


mais uma vez obrigada,
muita paz e muito sucesso na sua vida!
aliceit
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 26, 2011 21:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A. resolução de problema

Mensagempor MarceloFantini » Qua Abr 27, 2011 23:30

É uma resolução bem explicada e resolvida, como os alunos deveriam ser ensinados no ensino médio, e não álgebras sem explicações. Fico feliz que apesar do meu erro você tenha conseguido por conta própria! Muita paz e sucesso para você também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}