• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de limite

Cálculo de limite

Mensagempor -civil- » Ter Abr 26, 2011 00:04

Como calcular esse limite?

lim (3x + 1)/(4x^2 - 1)


\lim_{\x\tofrac({1-}{\2})}\frac{3x + 1}{\(4x^2 - 1}

Não consegui escrever pelo Latex, mas x tende a (1/2) pela esquerda


Preciso calcular esse limite de forma que não haja indefinação (divisão por zero). Já tentei fatorar por x mas não dá certo.

Obrigada pela ajuda.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Cálculo de limite

Mensagempor LuizAquino » Ter Abr 26, 2011 09:39

Eis o limite que você deseja:
\lim_{x \to \frac{1}{2}^-}\frac{3x + 1}{4x^2 - 1}

Eis o comando tex para esse limite:
Código: Selecionar todos
[tex]\lim_{x \to \frac{1}{2}^-}\frac{3x + 1}{4x^2 - 1}[/tex]


Note que o numerador é tal que \lim_{x\to \frac{1}{2}^-} 3x+1 = \frac{5}{2}.

Já o denominador é tal que \lim_{x\to \frac{1}{2}^-} 4x^2-1 = 0 . Além disso, analisando o sinal da função f(x)=4x^2-1, sabemos que f(x)<0 se -1/2 < x < 1/2. Ou seja, para valores de x próximos a 1/2 pela esquerda, temos que f(x)<0.

Como o numerador tende a uma constante não nula e o denominador tende a 0 pela esquerda, então o valor desse limite é:
\lim_{x \to \frac{1}{2}^-}\frac{3x + 1}{4x^2 - 1} = -\infty

Poderíamos também ter seguido o seguinte desenvolvimento:
\lim_{x \to \frac{1}{2}^-}\frac{3x + 1}{4x^2 - 1} = \left(\lim_{x\to\frac{1}{2}^-} 3x+1\right) \left(\lim_{x\to\frac{1}{2}^-}\frac{1}{4x^2-1}\right) = \frac{5}{2}(-\infty) = -\infty

Sugestões
Eu acredito que os tópicos abaixo vão lhe interessar.

Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818

Curso de Cálculo I no YouTube
viewtopic.php?f=137&t=4280
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Cálculo de limite

Mensagempor -civil- » Ter Abr 26, 2011 11:50

Consegui entender, muito obrigada pela ajuda
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}