• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício Frações Equivalentes

Exercício Frações Equivalentes

Mensagempor johnlaw » Ter Abr 19, 2011 14:24

Boa tarde Pessoa, será que alguém me ajuda, estou tentando resolver esse exercício mas não está dando certo..


1) Achar as 3 menores frações possíveis equivalentes a 3/5, 4/7 e 6/11 tais que o denominador da primeira seja igual ao numerador da segunda e o denominador da segunda seja igual ao numerador da terceiro.

2) Qual a fração equivalente a 12/20 e que tem 9 como m.d.c de seus termos.


Valeu hein!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Exercício Frações Equivalentes

Mensagempor NMiguel » Ter Abr 19, 2011 17:57

1) 72/120, 120/210, 210/385

2) 27/45
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício Frações Equivalentes

Mensagempor johnlaw » Qua Abr 20, 2011 14:28

Na primeira, existe algum método ? ou devo somente olhar as classes de equivalências ?

E na segunda, como chego nesse resultado ?

Obrigado desde já.
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Exercício Frações Equivalentes

Mensagempor NMiguel » Qua Abr 20, 2011 19:41

Na primeira existe um método.

Uma vez que temos 3/5, 4/7 e 6/11 que são fracções irredutíveis, como queremos que o numerador da segunda seja igual ao denominador da primeira, e como o máximo divisor comum entre 4 e 5 é 1, para que eles sejam iguais, o numerador da segunda fracção terá de ser multiplicado por um múltiplo de 5 (e a primeira por um múltiplo de 4).

Além disso, como queremos que o denominador da segunda seja igual ao numerador da terceira, e como o máximo divisor comum entre 7 e 6 é 1, para que eles sejam iguais, o numerador da segunda fracção terá de ser multiplicado por um múltiplo de 6 (e a terceira por um múltiplo de 7).

Como o mínimo múltiplo comum entre 5 e 6 é 30, a segunda fracção deve ser multiplicada por 30/30.

Por fim, basta multiplicar cada uma das restantes fracções pelo correspondente termo de forma a que o denominador da primeira seja igual ao numerador da segunda e o denominador da segunda seja igual ao numerador da terceira.

Na segunda, basta transformar a fracção numa fracção irredutível. Assim, o máximo divisor comum entre o numerador e o denominador passa a ser 1. Para que ele passe a ser 9, basta multiplicar a fracção resultante por 9/9.

Espero ter ajudado.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício Frações Equivalentes

Mensagempor johnlaw » Sex Abr 22, 2011 13:28

Entendi, ok muito obrigado...

mais uma coisinha... será que é possível resolver isso usando um sistema ?
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.