• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão Aberta da UERJ 2005 ! Me ajudem Por favor !

Questão Aberta da UERJ 2005 ! Me ajudem Por favor !

Mensagempor Domingues » Qua Out 08, 2008 13:52

Alguns cálculos matemáticos ficam mais simples quando usamos identidades, tais como:
a2 – b2 = (a + b)(a – b)
a2 + 2ab + b2 = (a + b)2
a3 + b3 = (a + b) (a2 – ab + b2)
Considerando essas identidades, calcule os valores numéricos racionais mais simples das expressões:
A) (57, 62)2 – (42, 38)2 ;
B) cos6 15º + sen6 15º.

Estou com dúvida na letra B. Cheguei até aqui:

(cos²15)³ + (sen²15)³ = (cos²15 + sen²15)(Cos4 15° - cos²15 x sen²15 + Sen4 15°)

O resultado é 13/16 e deve-se usar essas duas fórmulas trigonométricas: Cos(2x) = cos²x - sen²x
Sen(2x) = senx . cosx
Domingues
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Out 08, 2008 13:41
Formação Escolar: ENSINO MÉDIO
Área/Curso: AFA
Andamento: cursando

Re: Questão Aberta da UERJ 2005 ! Me ajudem Por favor !

Mensagempor admin » Ter Out 14, 2008 16:26

Olá Domingues, boas-vindas!

Domingues escreveu:Sen(2x) = senx . cosx

Detalhe: sen(2x) = 2\cdot senx \cdot cosx

Para facilitar, sugiro obter primeiramente o valores numéricos para cos15^o e sen15^o, pensando assim:

sen15^o = sen(45^o - 30^o)

cos15^o = cos(45^o - 30^o)

E então, utilize as identidades para diferença de arcos:

sen(A-B) = senA \cdot cosB - senB \cdot cosA

cos(A-B) = cosA \cdot cosB + senA \cdot senB


Somente depois, utilize as identidades do enunciado para fazer os cálculos.
Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59