• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Buraco no Triângulo

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Buraco no Triângulo

Mensagempor Molina » Qui Out 09, 2008 20:41

Boa noite.

Trago aqui um problema que para alguns não será tão simples de resolver e para outros (talvez quem já está na área a algum tempo) será muito fácil.
Por essa dupla dificuldade fiquei na dúvida em qual grupo colocar esse desafio, então classifiquei-o como Médio.

Aí vai:

Com base na figura abaixo, você pode notar que o 1° triângulo retângulo foi dividido em outras quatro figuras. O 2° triângulo, foi apenas [?] modificiado a posição dessas quatro figuras. Porém, neste segundo triângulo ficou um "buraco", que eu assinalei com o X , e ele não deveria exitir, teoricamente.

Cabe a vocês descobrirem onde que está o erro.

Imagem

Boa sorte! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Buraco no Triângulo

Mensagempor Sandra Piedade » Sex Out 10, 2008 08:00

:-D Não resisto a dar uma dica: a primeira figura não é um triângulo :-D
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Buraco no Triângulo

Mensagempor Molina » Sex Out 10, 2008 17:36

Sandra Piedade escreveu::-D Não resisto a dar uma dica: a primeira figura não é um triângulo :-D


:idea: dica muito bem dada por sinal.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Buraco no Triângulo

Mensagempor Molina » Dom Out 26, 2008 15:11

Vou dar um UP nesse problema porque considero ele muito interessante para ficar sem resposta.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Buraco no Triângulo

Mensagempor Sandra Piedade » Dom Nov 02, 2008 20:50

Vou dar um UP nesse problema porque considero ele muito interessante para ficar sem resposta.

:y:


;)
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Buraco no Triângulo

Mensagempor admin » Seg Nov 03, 2008 11:49

Olá.
Para quem está tentando, relacionando com a dica da Sandra, comparem o alinhamento das hipotenusas dos triângulos pequenos. :y:
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}