por guillcn » Qui Abr 07, 2011 20:42
O exercicio e o seguinnte :
O valor de real A,para que se tenha
![A . \sqrt[2]{3} = {\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3} A . \sqrt[2]{3} = {\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}](/latexrender/pictures/72388fd9be74a5d2281a2f5b3852a9c9.png)
entao passei raiz para o outro lado
![A = \frac{{\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}}{\sqrt[2]{3}} A = \frac{{\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}}{\sqrt[2]{3}}](/latexrender/pictures/c84b1397d96248a77ae27b62580f5353.png)
porem quando se tira o cubo perfeito das partes sempre resta uma raiz de tres
![\frac{\left(8+12\sqrt[2]{3}+18 + 9 \right)\left(8 - 12\sqrt[2]{3}+ 18 - 9\right)}{\sqrt[2]{3}} \frac{\left(8+12\sqrt[2]{3}+18 + 9 \right)\left(8 - 12\sqrt[2]{3}+ 18 - 9\right)}{\sqrt[2]{3}}](/latexrender/pictures/4dc2551835be4220388c45b56b2fd9f9.png)
=
![\frac{\left(35 + 12\sqrt[2]{3}\right)-\left(17 - 12\sqrt[2]{3}\right) }{\sqrt[2]{3}} \frac{\left(35 + 12\sqrt[2]{3}\right)-\left(17 - 12\sqrt[2]{3}\right) }{\sqrt[2]{3}}](/latexrender/pictures/f02a543df354c80b3b4cd5734bf8654b.png)
como posso resolver esse problema? obrigado pela atençao.
-
guillcn
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Abr 05, 2011 16:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por FilipeCaceres » Qui Abr 07, 2011 21:10
Quando você quisser alterar alguma coisa no teu post vá em editar no próprio post que você colocou, não é necessário criar outro apenas para mostrar as mudanças.
Veja a dica em
viewtopic.php?f=106&t=4346 Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por guillcn » Qui Abr 07, 2011 21:13
ok foi um erro no meu pc .axei q naum tivesse enviado o primeiro topico.
-
guillcn
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Abr 05, 2011 16:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cubo perfeito
por guillcn » Qui Abr 07, 2011 20:40
- 3 Respostas
- 1638 Exibições
- Última mensagem por FilipeCaceres

Qui Abr 07, 2011 21:16
Álgebra Elementar
-
- Quadrado Perfeito?
por Molina » Qui Nov 25, 2010 17:00
- 6 Respostas
- 6490 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 16:28
Desafios Difíceis
-
- Quadrado perfeito
por guillcn » Ter Abr 05, 2011 19:15
- 2 Respostas
- 2372 Exibições
- Última mensagem por guillcn

Ter Abr 05, 2011 19:54
Álgebra Elementar
-
- Ajuda com quadrado perfeito
por joaoalbertotb » Ter Ago 25, 2009 13:01
- 2 Respostas
- 2199 Exibições
- Última mensagem por joaoalbertotb

Qua Ago 26, 2009 12:20
Trigonometria
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4824 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.