• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolvendo a desigualdade...

Resolvendo a desigualdade...

Mensagempor Aliocha Karamazov » Qua Abr 06, 2011 19:55

Galera, gostaria de uma ajuda aqui:

Resolvendo a desigualdade 1-3x > \sqrt{2 + x^2 -3x} obtemos:

Eu tentei fazer da seguinte maneira:

(1 -3x)^2 > (\sqrt{2 + x^2 -3x})^2 \Rightarrow 9x^2 -6x +1 > x^2 -3x +2 \Rightarrow 8x^2 -3x -1>0
\Delta= 41 \Rightarrow x=\frac{3\pm\sqrt{41}}{16}
Ainda, pela condição de existência:
x^2 -3x +2 \geq 0

Depois disso, fiz a intersecção com as soluções das duas inequações, mas a resposta saiu diferente do livro. Alguém pode ajudar? Muito obrigado!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Resolvendo a desigualdade...

Mensagempor Molina » Qua Abr 06, 2011 20:14

Boa noite.

A solução da equação 8x^2 - 3x -1 > 0 é:

MSP155619f35i886da6f277000038i2327334091big.gif
MSP155619f35i886da6f277000038i2327334091big.gif (6.98 KiB) Exibido 2446 vezes


E a solução de x^2 -3x + 2 \geq 0 é:

MSP111019f35iac71ah1eai00005e5c4i2a55f72c8h.gif
MSP111019f35iac71ah1eai00005e5c4i2a55f72c8h.gif (6.76 KiB) Exibido 2446 vezes


A interseção dos dois não deu a resposta do livro?

Qual a solução que consta no gabarito?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Resolvendo a desigualdade...

Mensagempor FilipeCaceres » Qua Abr 06, 2011 20:53

Só faltou uma coisinha para vc conseguir resolver.
Vou lhe dar uma dica para um caso genérico.

Para resolver equação do tipo \sqrt{f(x)}<g(x)
1º Estabeleça o domínio de validade
f(x)\geq0 e g(x)>0 (i)

2ºElevando ao quadrado temos,
f(x)<[g(x)]^2 (ii)

De (i) e (ii) temos

0\leq f(x)<[g(x)]^2 e g(x)>0

Resumindo
\sqrt{f(x)}<g(x) \Rightarrow 0\leq f(x)<[g(x)]^2 e g(x)>0

Você se esqueceu de fazer g(x)>0.

Eu encontrei como solução x<\frac{3-\sqrt{41}}{16}
Seria este o valor?

Abraço
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Resolvendo a desigualdade...

Mensagempor Aliocha Karamazov » Qua Abr 06, 2011 23:20

Realmente, esse foi o problema: não fiz -3x+1>0. Na minha solução, além de x<\frac{3-\sqrt{41}}{16} eu havia encontrado x>2.

Agradeço aos dois que me ajudaram!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}