• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação do segundo grau

Inequação do segundo grau

Mensagempor Aliocha Karamazov » Ter Abr 05, 2011 21:42

E aí, pessoal. Estou com dúvida na seguinte questão:

Na reta real, o número 4 está situado entre as raízes de f(x)=x^2 +mx -28. Nessas condições, os possíveis valores de m são tais que:

Olhem como eu tentei:

\Delta=\frac{-m \pm\sqrt{m^2 +112}}{2}\Rightarrow x^\prime=\frac{-m-\sqrt{m^2 +112}}{2} e x^\prime^\prime=\frac{-m+\sqrt{m^2 +112}}{2}

E agora? Tenho que resolver x^\prime<4 e x^\prime^\prime>4? A resposta seria a intersecção dos dois? Isso me pareceu estranho. Não tenho certeza se está certo; deve haver uma maneira melhor. Obrigado a todos que puderem ajudar. Abraço!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Inequação do segundo grau

Mensagempor FilipeCaceres » Ter Abr 05, 2011 23:08

Olá Aliocha Karamazov,

Seja a funçãof(x)=ax^2+bx+c e \alpha um valor real que vamos compara com as raízes x_1 \leq x_2

1)Se \alpha<x_1\leq x_2 então \alpha está à esquerda das raízes. a.f(\alpha)>0
2)Se x_1<\alpha<x_2 então \alpha está entre as raízes. a.f(\alpha)<0
3)Se x_1\leq x_2, \alpha então \alpha está à direita das raízes. a.f(\alpha)>0
4)Se \alpha =x_1 ou \alpha=x_2 então \alpha é um das raízes. a.f(\alpha)=0

OBS.: Para 1,3,4 devemos ter \Delta\geq 0 e para 2 \Delta> 0

Com isso já é possível resolver a questão.
Seja \alpha=4 e a=1

Temos,
1.f(4)<0 e \Delta>0 observe que para qualquer valor de m teremos \Delta>0, sendo assim, não precisamos nos preocupar com ele.

Agora basta calcular 1.f(4)<0 onde temos,
16+4m-28<0
4m-12<0
4m<12

Portanto,
m<3.

Espero que seja isso.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Inequação do segundo grau

Mensagempor FilipeCaceres » Ter Abr 05, 2011 23:15

Pensei que tivesse feito algo errado, mas acho que é isso.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Inequação do segundo grau

Mensagempor Aliocha Karamazov » Qua Abr 06, 2011 18:16

A resposta está correta, mas não entendi de onde você tirou as afirmações 1, 2, 3 e 4. Se alguém puder esclarecer, ficarei grato.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Inequação do segundo grau

Mensagempor Aliocha Karamazov » Qua Abr 06, 2011 18:51

Desenhei as parábolas para tentar entender o que você disse e consegui visualizar. Você viu essa relação em algum livro ou foi uma sacada sua mesmo? Achei bem eficiente.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?