• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo que envolve PG

Calculo que envolve PG

Mensagempor andersontricordiano » Qui Mar 31, 2011 02:19

Seja x=1+10+{10}^{2}+...+{10}^{n-1} e y={10}^{n}+5 . Determine \sqrt[]{xy+1}

Resposta: \frac{{10}^{n}+2}{3}


Por favor me ajudem!
Obrigado quem me ajudar!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo que envolve PG

Mensagempor LuizAquino » Qui Mar 31, 2011 12:32

Dica
Note que x representa soma dos n termos da p.g. \{1,\, 10,\, {10}^{2},\, \ldots,\, {10}^{n-1}\}. Usando a fórmula para a soma dos n termos de uma p.g., teremos que:

x = \frac{1\cdot (10^n-1)}{10-1}

Agora, tente resolver o exercício.

Se tiver dificuldade, envie toda a resolução que você tentou fazer e onde está a sua dúvida.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo que envolve PG

Mensagempor andersontricordiano » Qui Mar 31, 2011 16:03

Eu cheguei a esse calculo

\sqrt[]{\frac{{10}^{n2}+(5*{10}^{n})-(1*{10}^{n})-5}{9}}


A minha dúvida é como se procede para calcular isso
(5*{10}^{n})-(1*{10}^{n})



Obrigado pela ajuda!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo que envolve PG

Mensagempor FilipeCaceres » Qui Mar 31, 2011 17:35

Dando continuidade,
\sqrt[]{\frac{{10}^{n2}+(5*{10}^{n})-(1*{10}^{n})-5}{9}+1} OBS.: esqueceu do +1

Arrumando temos,
\sqrt[]{\frac{{10}^{2n}+4.{10}^{n}+4}{9}}

Observe que:
10^{2n}+4.10^n+4=(10^n+2)^2

Assim temos,
\sqrt{(\frac{10^n+2}{3})^2}

Portanto,
\sqrt[]{xy+1}=\frac{10^n+2}{3}

Espero ter ajudado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}