por PHANIE » Qua Mar 30, 2011 16:07
Seja f uma função real de variável real definida por f ( x ) = -x + 2 , se -1 < x < 2 ; x^2 + ax +b , se x < ou igual -1 ou x > ou igual 2
os valores de a e b , para que o grafico de f nao tenha ruptura , são , respectivamente:
eu nao entendi como o grafico ira ter uma ruptura.... tentei montar um sistema substituindo os valores mas nao consegui achar a resposta certa.
-
PHANIE
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Mar 30, 2011 15:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: PATOLOGIA
- Andamento: formado
por LuizAquino » Qua Mar 30, 2011 17:59
Eis a função do exercício:

Para não ter "ruptura", se você substituir x por -1 em -x+2 e em

o resultado deve ser o mesmo. Isso também deve acontecer para x substituído por 2.
Desse modo, você terá que resolver o seguinte sistema:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por profmatematica » Qua Mar 30, 2011 18:58
F(x)=-x+2 -1<x<2 reta decrescente substitui x por -1 e 2 entao tu vais encontrar A(-1,3) e B(2,0) ok? Para que o grafico seja continuo vc deve calcular a e b de modo que as interseccoes das 2 funcoes sejam no ponto A e B entao se f(x)=x^2 +ax+b substitui x por -1 e 2 dai vc vai encontrar um sistema e resolvendo esse sistema tu vais encontrar -2 e 0
-
profmatematica
- Usuário Dedicado

-
- Mensagens: 42
- Registrado em: Sex Ago 27, 2010 13:34
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Logaritmo]-PAES UNIMONTES
por thamysoares » Sex Nov 16, 2012 10:01
- 4 Respostas
- 2145 Exibições
- Última mensagem por thamysoares

Sex Nov 16, 2012 16:34
Logaritmos
-
- CN 2004
por Georges123 » Dom Mar 24, 2013 16:45
- 2 Respostas
- 3253 Exibições
- Última mensagem por Georges123

Qui Abr 18, 2013 00:43
Aritmética
-
- Prova 1 - 2004
por admin » Sáb Jul 21, 2007 05:55
- 0 Respostas
- 1529 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:55
Cálculo Numérico e Aplicações
-
- Prova 2 - 2004
por admin » Sáb Jul 21, 2007 05:56
- 0 Respostas
- 1495 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:56
Cálculo Numérico e Aplicações
-
- Listas 2 e 3 - 2004
por admin » Sáb Jul 21, 2007 06:01
- 0 Respostas
- 2332 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 06:01
Cálculo Numérico e Aplicações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.