• Anúncio Global
    Respostas
    Exibições
    Última mensagem

unimontes - 2004

unimontes - 2004

Mensagempor PHANIE » Qua Mar 30, 2011 16:07

Seja f uma função real de variável real definida por f ( x ) = -x + 2 , se -1 < x < 2 ; x^2 + ax +b , se x < ou igual -1 ou x > ou igual 2
os valores de a e b , para que o grafico de f nao tenha ruptura , são , respectivamente:


eu nao entendi como o grafico ira ter uma ruptura.... tentei montar um sistema substituindo os valores mas nao consegui achar a resposta certa.
PHANIE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 30, 2011 15:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: PATOLOGIA
Andamento: formado

Re: unimontes - 2004

Mensagempor LuizAquino » Qua Mar 30, 2011 17:59

Eis a função do exercício:
f(x)=
\left\{\begin{array}{ll}
-x+2 &\textrm{, se } -1 < x  < 2 \\
x^2 +ax + b & \textrm{, se } x\leq -1 \textrm{ ou } x \geq 2
\end{array}
\right.

Para não ter "ruptura", se você substituir x por -1 em -x+2 e em x^2+ax+b o resultado deve ser o mesmo. Isso também deve acontecer para x substituído por 2.

Desse modo, você terá que resolver o seguinte sistema:
\left\{\begin{array}{l}
-(-1)+2 = (-1)^2+a\cdot (-1)+b \\
-(2)+2 = (2)^2+a\cdot 2+b \\
\end{array}
\right.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: unimontes - 2004

Mensagempor profmatematica » Qua Mar 30, 2011 18:58

F(x)=-x+2 -1<x<2 reta decrescente substitui x por -1 e 2 entao tu vais encontrar A(-1,3) e B(2,0) ok? Para que o grafico seja continuo vc deve calcular a e b de modo que as interseccoes das 2 funcoes sejam no ponto A e B entao se f(x)=x^2 +ax+b substitui x por -1 e 2 dai vc vai encontrar um sistema e resolvendo esse sistema tu vais encontrar -2 e 0
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}