• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação - 2º grau com delta menor que zero

Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sex Mar 25, 2011 18:27

\frac{x+1}{2-x}<\frac{x}{3+x}

Resolvendo a expressão e analisando os dois casos possíveis, chego em uma inequação de 2º grau com \Delta<0

Como resolvo a partir daí? O resultado do livro não é vazio!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Sex Mar 25, 2011 18:31

Envie a sua resolução para que possamos identificar onde está o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sex Mar 25, 2011 18:56

\frac{x+1}{2-x} - \frac{x}{3+x} < \frac{x}{3+x} - \frac{x}{3+x}

\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:

2{x}^{2} +2x+ 3<0
e
2{x}^{2} +2x+ 3>0

Elas não têm raízes reais. E a partir daí não sei resolver.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor MarceloFantini » Sex Mar 25, 2011 20:22

Vamos analisar assim: \frac{2x^2 +2x +3}{(2-x)(3+x)} < 0. Como o numerador é sempre positivo, basta descobrir quando (2-x)(3+x) é negativo.

3+x < 0 \Longleftrightarrow x < -3

2-x < 0 \Longleftrightarrow x>2

Assim, S = ( - \infty, -3) \cup ( 2, + \infty).

Em questões assim, não elimine o denominador. Trabalhe com a fração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor renanrdaros » Sáb Mar 26, 2011 01:52

Obrigado por mais essa!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Sáb Mar 26, 2011 10:31

renanrdaros escreveu:Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:
2{x}^{2} +2x+ 3<0
e
2{x}^{2} +2x+ 3>0

É comum os alunos cometerem o equívoco de multiplicar as inequações usando expressões e não se preocupar com o sinal das mesmas. Leia no tópico a seguir um comentário a respeito disso:
inequação, dúvida.
viewtopic.php?f=106&t=3856
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor johnlaw » Dom Mar 27, 2011 13:08

Então, desenvolvendo o\frac{x+1}{2-x}<\frac{x}{3+x} eu chego em \frac{2x+3}{(2-x)(3+x)} <0. O denominador fica igual, mas não posso dizer que ele será maior que zero e então encontrar somente o denominador.

Desenvolvi assim:

\frac{x+1}{2-x} - \frac{x}{3+x} < \frac{x}{3+x} - \frac{x}{3+x}

\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

\frac{3x + 3 + x^2 +x - 2x -x^2 }{(2-x)(3+x)}<0

\frac{x + 3+ x}{(2-x)(3+x)}<0
\frac{2x + 3}{(2-x)(3+x)}<0


Para dar a equaçã de 2º grau acima, aquele primeiro +x (na 3ª linha desenvolvida) deveria ser -x, mas o que fiz está errado ?

Valeu! Abraços a todos!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando

Re: Inequação - 2º grau com delta menor que zero

Mensagempor LuizAquino » Dom Mar 27, 2011 13:29

johnlaw escreveu:\frac{(3+x)(x+1)-(2-x)x}{(2-x)(3+x)}<0

\frac{3x + 3 + x^2 +x - 2x -x^2 }{(2-x)(3+x)}<0


Nessa passagem está o erro. O correto seria:
\frac{3x + 3 + x^2 +x - 2x + x^2 }{(2-x)(3+x)}<0

Ou seja, o seu problema foi no desenvolvimento do termo -(2-x)x, que deve ser igual -2x+x^2 e não - 2x -x^2 como você fez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação - 2º grau com delta menor que zero

Mensagempor johnlaw » Dom Mar 27, 2011 16:33

Ah sim!! OK Luiz, muito obrigado!


Abraços!
johnlaw
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Ago 06, 2010 13:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Licenciatura
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59