• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (volume)

Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 11:54

Pessoal mais uma. Essa eu fiz crente que tava indo bem, me deparei com um zero que acabou com a graça.
49) Um engenheiro vai projetar uma piscina em forma de paralelepípedo reto retângulo, cujas medidas internas são, em metros, expressas por x, x - 20 e 2. O maior volume que essa piscina poderá ter, em metros cúbicos, é:
resp: 200

Eu fiz assim:
V = 2x(x - 20)
2x² - 40x = 0
x = 0 ou
2x - 40 = 0
x = 20
Mas se x = 20 um dos lados é x - 20 que vai zerar.
Fiz pela opção (200) também deu raízes = 20 (delta = 0). Aonde errei?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor LuizAquino » Qui Mar 24, 2011 12:31

Analisando todos os seus tópicos, é fácil perceber que você tem a mania de igualar tudo que vê pela frente a zero! *-)

Se V(x) é o volume em função da medida x, então V(x)=0 seria a medida x que faz o volume ser zero, o que não é o desejado.

O que se quer é: qual é o valor máximo da função V(x)?

Aproveito para perguntar se as medidas no texto do exercício não seriam x, 20-x e 2 ? Se fossem essas medidas, você quer o máximo que a função V(x) = -2x^2+40x pode assumir.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 12:41

LuizAquino escreveu:Analisando todos os seus tópicos, é fácil perceber que você tem a mania de igualar tudo que vê pela frente a zero! *-)

Se V(x) é o volume em função da medida x, então V(x)=0 seria a medida x que faz o volume ser zero, o que não é o desejado.

O que se quer é: qual é o valor máximo da função V(x)?

Aproveito para perguntar se as medidas no texto do exercício não seriam x, 20-x e 2 ? Se fossem essas medidas, você quer o máximo que a função V(x) = -2x^2+40x pode assumir.


O texto: "...expressas por x, x - 20 e 2. O maior volume que essa piscina poderá ter..." eu não sei se essa questão foi anulada.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor LuizAquino » Qui Mar 24, 2011 14:27

Se as medidas forem realmente x, x-20 e 2, temos que o volume seria V(x) = 2x^2-40x. Note que só faz sentido a medida x estar no intervalo aberto (0, 20). Para x nesse intervalo temos que V(x)<0, mas no contexto não faz sentido um volume negativo.

Desse modo, as medidas deveriam ser x, 20-x e 2. Para essas medidas, o volume seria V(x) = -2x^2+40x, que para x no intervalo (0, 20) é tal que V(x)>0. Além disso, o máximo dessa função seria V(10)=200.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 18:51

LuizAquino escreveu:Se as medidas forem realmente x, x-20 e 2, temos que o volume seria V(x) = 2x^2-40x. Note que só faz sentido a medida x estar no intervalo aberto (0, 20). Para x nesse intervalo temos que V(x)<0, mas no contexto não faz sentido um volume negativo.

Desse modo, as medidas deveriam ser x, 20-x e 2. Para essas medidas, o volume seria V(x) = -2x^2+40x, que para x no intervalo (0, 20) é tal que V(x)>0. Além disso, o máximo dessa função seria V(10)=200.


Valeu Luiz, agora ficou claro prá mim. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?