• Anúncio Global
    Respostas
    Exibições
    Última mensagem

E ou OU ou E e OU ou absolutamente nada disso

E ou OU ou E e OU ou absolutamente nada disso

Mensagempor Dan » Dom Mar 20, 2011 01:34

Gente! A minha dúvida em poucas palavras é: porque algumas pessoas quando terminam uma resolução através da fórmula de Bhaskara costumam dizer x' OU x''?
Ok, do ponto de vista lógico uma disjunção é verdadeira se pelo menos uma das proposições é verdadeira. O que eu estou questionando é outra coisa:

Por exemplo, tomemos a equação {x}^{2} - x - 2 = 0 cujas raízes são -1 e 2.

Porque dizer -1 ou 2? Ora, se para a disjunção der verdadeira pelo menos uma das proposições deve ser verdadeira, então também é verdadeiro que a solução para esta equação é -1 ou 3.

Eu discuti isso com uma colega, e nós chegamos à conclusão de que em aplicações envolvendo a equação do segundo grau em que apenas um valor é considerado, usamos a disjunção para especificar que pelo menos um dos valores é válido.

Porém, no caso de determinação de raízes, o formal é utilizar a conjunção, certo?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: E ou OU ou E e OU ou absolutamente nada disso

Mensagempor MarceloFantini » Dom Mar 20, 2011 11:43

Sim, o formal seria usar a conjunção.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.