• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ache a equação da circunferencia

ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 01:51

ache a equação da circunferencia com centro no ponto c e tangente a reta AB

bom pessoala minha dificuldade seria nunca ter visto um tipo de questão dessa nos livros do ensino medio ou seja eu nem sei por onde começar se alguem puder me ajudar seria muito grato desde já agradeço
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor Dan » Dom Mar 20, 2011 02:13

Max, essas questões estão definidas dessa forma ou há algum desenho que as acompanha? Entenda que com esses dados que você posta é possível apenas definir essas equações genericamente. Se há alguma informação relevante é de fundamental importância que você as adicione, senão ninguém poderá te ajudar.

Primeiramente você deve considerar que a equação da reta é {r}^{2} = {(x-a)}^{2}+{(x-b)}^{2}.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 02:17

não a questão é da maneira que eu disse ache a equação da circunferencia com centro no ponto c e tangente a reta AB
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor Dan » Dom Mar 20, 2011 02:23

Então só definindo de forma genérica. Uma dica é que o vetor formado pelo ponto de tangência e pelo centro tem módulo igual ao raio. A partir disso você pode definir seus critérios. Em que semestre do curso você está?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 02:26

eu to no primeiro ano num sei muita coisa ou melhor quase nd
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 02:32

é Dan valeu pelas dicas mas acho que eu num vou conseguir fazer essa não mas muito obrigado
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor Dan » Dom Mar 20, 2011 02:38

Parece que você está começando a estudar Geometria Analítica. Essas questões parecem um tanto avançadas. Primeiro você tem que aprender bem geometria euclidiana, trigonometria e vetores, que te darão um suporte para seguir forte em Geometria Analítica.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 11:22

o Dan vc disse para eu considerar a equação da reta só que aquela equação e a equação reduzida da circunferencia de centro c(a,b) e raio r bom eu acho que é pelo que eu andei estudando aqui bom a reta que tangencia a circunferencia deve ser r: ax + by + c = 0 então como ela é tangente a circunferencia r= d foi o que vc disse aquela hora só que eu tenho essas enformações bom não sei se estão corretas como eu acho a equação da circunferencia agora DAN
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 12:23

bom dan e continue pesquizando e considerando c(a,b) e a reta tangente Ax+By + c = 0 se formos calcular a distancia fica o seguinted={\left|\frac{Aa+Bb+c}{\sqrt[]{{a}^{2}+{b}^{2}}} \right|}^{} como a reta é tangencia a circunferencia então d=r se substituir na equação reduzida ficara assim {(x-a)}^{2}+{(y-b)}^{2}=
{\left|\frac{Aa+Bb+c}{\sqrt[]{{a}^{2}+{b}^{2}}} \right|}^{2} bom o que vc acha e se estiver correto como vou dar continuidade nisso desde já agradeço
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor Dan » Dom Mar 20, 2011 18:16

É uma solução inteligente. E ela para por aí. Você até pode tentar desenvolver os produtos notáveis, mas acho que não vai levar a nada interessante.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 18:27

então é isso mesmo dan acabo ali e pronto
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: ache a equação da circunferencia

Mensagempor max » Dom Mar 20, 2011 18:30

ou dan se não for pedir muito daria pra vc continuar a resolver ela só pra mim ver como ficaria
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.