• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercícios de limites

Exercícios de limites

Mensagempor vmouc » Sex Mar 11, 2011 23:51

Calcule os limites se existir:

Pessoal, gostaria de confirmar se minhas respostas estão corretas, por favor, me ajudem!

a)\lim_{x\rightarrow4}(5x+3)=23

b)\lim_{x\rightarrow3}(4{x}^{2}+3x-1)= 44

c)\lim_{x\rightarrow0}\frac{x^2 -x}{x}= 0

d)\lim_{x\rightarrow2}\frac{x^2 -4}{x-2}=4

pela forma de substituição daria \frac{0}{0}

pela forma de fatoração ficaria \frac{(x-2)(x+2)}{x-2}=? x=2 e


e)\lim_{x\rightarrow3}\frac{x+3}{x+5}=\frac{3}{4}

f)\lim_{x\rightarrow5}\frac{x^2-10x+25}{x-5}=\frac{25-10x+25}{x-5}\Rightarrow \frac{50-10x}{0} ou seja, o denominador =0.O que eu faço aqui, please? rsrs

As outras estão corretas?

Muito obrigado pela ajuda!
Editado pela última vez por vmouc em Sáb Mar 12, 2011 00:13, em um total de 2 vezes.
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Exercícios de limites

Mensagempor LuizAquino » Sáb Mar 12, 2011 00:04

Os exercícios a), b) e e) estão ok.

c) Dica: x^2-x = x(x-1)

d) Dica: x^2 - 4 = (x-2)(x+2)

f) Dica: x^2-10x+25 = (x-5)^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercícios de limites

Mensagempor vmouc » Sáb Mar 12, 2011 00:06

Eu não entendi como ficará o resultado destes limites. Não é um valor exato?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Exercícios de limites

Mensagempor LuizAquino » Sáb Mar 12, 2011 00:09

Após usar as dicas que eu indiquei você poderá fazer simplificações que removerão a indeterminação de cada um dos limites.

Uma vez que as indeterminações forem removidas, você pode resolver os limites usando a mesma ideia usada nos outros limites que você resolveu.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercícios de limites

Mensagempor vmouc » Sáb Mar 12, 2011 00:37

Eu só não tiver certeza na f).
Dá uma olhadinha nas outras por favor:

c)\lim_{x\rightarrow0}\frac{x(x-1)}{x}=1

d)\lim_{x\rightarrow2}\frac{(x-2)(x+2)}{x-2}= x=-2

f)\lim_{x\rightarrow5}\frac{(x-5)(x-5)}{x-5} aqui zera.

\lim_{x\rightarrow5}\frac{(x-5)^2}{x-5}\Rightarrowx=5 seria isto?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Exercícios de limites

Mensagempor LuizAquino » Sáb Mar 12, 2011 08:55

c) \lim_{x\to 0} \frac{x(x-1)}{x} = \lim_{x\to 0} x-1 = -1

d) \lim_{x\rightarrow 2}\frac{(x-2)(x+2)}{x-2} = \lim_{x\rightarrow 2} x+2 = 4

f) \lim_{x\rightarrow5}\frac{(x-5)(x-5)}{x-5} = \lim_{x\rightarrow 5} x-5 = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercícios de limites

Mensagempor vmouc » Sáb Mar 12, 2011 11:05

Sempre tem que usar o método de substituição nesses casos?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Exercícios de limites

Mensagempor LuizAquino » Sáb Mar 12, 2011 11:21

Presumo que você esteja no início do curso de Cálculo.

Desse modo, o que usamos para resolver esses limites foram as Propriedades Operatórias dos limites e o conhecimento dos limites: \lim_{x\to a} x = a e \lim_{x\to a} c = c, sendo c uma constante.

Por exemplo, o limite \lim_{x\to 0} \frac{x(x-1)}{x} é o mesmo que \lim_{x\to 0} x-1.

Uma das Propriedades Operatórias dos limites diz que "o limite da subtração é a subtração dos limites". Portanto, temos que \lim_{x\to 0} x-1 = \lim_{x\to 0} x - \lim_{x\to 0} 1.

Usando os dois limites conhecidos acima, temos que \lim_{x\to 0} x - \lim_{x\to 0} 1 = 0 - 1 = - 1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercícios de limites

Mensagempor vmouc » Sáb Mar 12, 2011 21:51

Pessoal,

continuando esta lista, não faço idéia como resolvo isso:
\lim_{x\rightarrow10}\left[1n(10-x) \right]

Help, please! Estou estudando as outras e postarei a continuação desse exercício para que me ajudem na correção.

Muito Obrigado!!!
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Exercícios de limites

Mensagempor LuizAquino » Dom Mar 13, 2011 01:34

Observação
Esse limite só está bem definido pela direita. Portanto, o exercício deve ser:

\lim_{x\to 10^+} \ln (x-10)

Sugestão

Observe o gráfico da função f(x)=\ln x e tente responder o exercício.
grafico-logaritmo-natural.png
grafico-logaritmo-natural.png (7.41 KiB) Exibido 5248 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?