• Anúncio Global
    Respostas
    Exibições
    Última mensagem

resolução derivada integral

resolução derivada integral

Mensagempor MARCIOESTUDIOSO » Seg Fev 14, 2011 10:33

Olá Amigos!
Tudo bem?
Estou entrando em contato porque eu fiz essa derivada, e não está batendo com gabarito de resposta, gostaria que em ajudasse a resolver e me mostrasse aonde estou errando por favor.
mais antes veja o que fiz
u=tg(x)
du=sec²(x)dx
?tg³(x)sec²(x)dx=
?u³du=
(u^3)/3+c=
tg^3(x)/3
3x2.34
?
não consigo entender aonde to errando?
se pode me ajudar por favor.
Não posso criar novos tópicos, não entendi motivo mesmo
gostaria de resposta sobre isso..
e para evitar problemas, tirei questão em anexo.
vou escrever.
? (3 sec x tgx - 5 cos sec^2 x) dx
Bom tah ai!
se pode me ajudar me orientando, não fazendo para "mim" eu agradeço!
Editado pela última vez por MARCIOESTUDIOSO em Seg Fev 14, 2011 20:08, em um total de 2 vezes.
MARCIOESTUDIOSO
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 14, 2011 10:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Duvida derivada integral

Mensagempor MARCIOESTUDIOSO » Seg Fev 14, 2011 19:52

Não entendi!!
eu tentei fazer?
porque excluir?
eu só coloquei anunciado em anexo?
gostaria saber porque motivo disso?
MARCIOESTUDIOSO
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 14, 2011 10:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: resolução derivada integral

Mensagempor LuizAquino » Ter Fev 15, 2011 01:08

Exercício 1: \int \tan^3 x \sec^2 x \,dx

Seja u=\tan\ x. Desse modo, du = \sec^2 x \,dx. Portanto, temos que

\int \tan^3 x \sec^2 x \,dx = \int u^3 \,du = \frac{u^4}{4} + c = \frac{\tan^4 x}{4} + c



Exercício 2: \int 3\sec x \tan x - 5\cos x \sec^2 x\,dx

Como \sec^2 x = \frac{1}{\cos^2 x}, então essa integral é o mesmo que:

\int 3\sec x \tan x - 5\sec x\,dx

Separando em duas:
3\int \sec x \tan x \,dx -5\int \sec x\,dx

Para resolver a primeira, basta lembrar que (\sec x)^\prime = \sec x \tan x.

Para resolver a segunda, há um truque algébrico. Devemos multiplicar e dividir o integrando por \tan x + \sec x. Ou seja, teremos:
\int \frac{\sec x(\tan x + \sec x)}{\tan x + \sec x}\,dx = \int \frac{\sec x\tan x + \sec^2 x}{\tan x + \sec x}\,dx

Agora, fazendo a substituição u = \tan x + \sec x, temos que du = \sec^2 x + \sec x\tan x\, dx. Portanto, ficamos:
\int \frac{\sec x\tan x + \sec^2 x}{\tan x + \sec x}\,dx = \int \frac{1}{u}\,du = \ln |u| + c = \ln |\tan x + \sec x| + c.

Logo, teremos que:
\int 3\sec x \tan x - 5\cos x \sec^2 x\,dx = 3\sec x - 5\ln |\tan x + \sec x| + c
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: resolução derivada integral

Mensagempor MarceloFantini » Ter Fev 15, 2011 12:21

Luiz: interessante esse truque. É algo famoso? Eu não tive isso no meu curso de cálculo 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: resolução derivada integral

Mensagempor LuizAquino » Ter Fev 15, 2011 14:37

Olá Fantini,

Não sei a origem desse truque. Foi algo que aprendi quando fiz o curso de Cálculo I. Inclusive, se você procurar pelo google por "integral da secante" irá encontrar muitas páginas ensinando o truque.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?