por MARCIOESTUDIOSO » Seg Fev 14, 2011 10:33
Olá Amigos!
Tudo bem?
Estou entrando em contato porque eu fiz essa derivada, e não está batendo com gabarito de resposta, gostaria que em ajudasse a resolver e me mostrasse aonde estou errando por favor.
mais antes veja o que fiz
u=tg(x)
du=sec²(x)dx
?tg³(x)sec²(x)dx=
?u³du=
(u^3)/3+c=
tg^3(x)/3
3x2.34
?
não consigo entender aonde to errando?
se pode me ajudar por favor.
Não posso criar novos tópicos, não entendi motivo mesmo
gostaria de resposta sobre isso..
e para evitar problemas, tirei questão em anexo.
vou escrever.
? (3 sec x tgx - 5 cos sec^2 x) dx
Bom tah ai!
se pode me ajudar me orientando, não fazendo para "mim" eu agradeço!
Editado pela última vez por
MARCIOESTUDIOSO em Seg Fev 14, 2011 20:08, em um total de 2 vezes.
-
MARCIOESTUDIOSO
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 14, 2011 10:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por MARCIOESTUDIOSO » Seg Fev 14, 2011 19:52
Não entendi!!
eu tentei fazer?
porque excluir?
eu só coloquei anunciado em anexo?
gostaria saber porque motivo disso?
-
MARCIOESTUDIOSO
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 14, 2011 10:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por LuizAquino » Ter Fev 15, 2011 01:08
Exercício 1:

Seja

. Desse modo,

. Portanto, temos que
Exercício 2:

Como

, então essa integral é o mesmo que:

Separando em duas:

Para resolver a primeira, basta lembrar que

.
Para resolver a segunda, há um truque algébrico. Devemos multiplicar e dividir o integrando por

. Ou seja, teremos:

Agora, fazendo a substituição

, temos que

. Portanto, ficamos:

.
Logo, teremos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Ter Fev 15, 2011 12:21
Luiz: interessante esse truque. É algo famoso? Eu não tive isso no meu curso de cálculo 1.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Ter Fev 15, 2011 14:37
Olá Fantini,
Não sei a origem desse truque. Foi algo que aprendi quando fiz o curso de Cálculo I. Inclusive, se você procurar pelo google por "integral da secante" irá encontrar muitas páginas ensinando o truque.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada/Integral resolução lista exercícios
por dimas_ant » Dom Dez 22, 2013 13:33
- 0 Respostas
- 1512 Exibições
- Última mensagem por dimas_ant

Dom Dez 22, 2013 13:33
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Resolução de integral indefinida.
por brunoisoppo » Qui Mar 03, 2016 15:26
- 0 Respostas
- 3452 Exibições
- Última mensagem por brunoisoppo

Qui Mar 03, 2016 15:26
Cálculo: Limites, Derivadas e Integrais
-
- Problema com resolução da derivada de uma função
por DavidUserCalc » Qua Mar 31, 2010 19:50
- 2 Respostas
- 3196 Exibições
- Última mensagem por DavidUserCalc

Qui Abr 01, 2010 01:19
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial de 2ª Ordem] - Resolução de Questão
por Vitor2+ » Sáb Jun 30, 2012 23:04
- 3 Respostas
- 3677 Exibições
- Última mensagem por Vitor2+

Dom Jul 01, 2012 11:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada-Regra da Cadeia]- Duvidas na resolução
por fabriel » Qui Jun 20, 2013 01:28
- 0 Respostas
- 1204 Exibições
- Última mensagem por fabriel

Qui Jun 20, 2013 01:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.