• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[hipérbole / cônica] Funções

[hipérbole / cônica] Funções

Mensagempor Cleyson007 » Sáb Set 06, 2008 01:32

Olá Fabio Sousa, boa noite!!!

Estou me dedicando ao estudo das "Funções", e, inclusive estou com algumas que gostaria de dicutir aqui no fórum, mas, vou precisar de fazer o diagrama delas. Gostaria de saber se há como fazê-lo pelo editor de fórmulas (LaTeX)!!!

Aproveitando a oportunidade... Gostaria que me desse uma dica quanto ao raciocínio da questão que segue.

A questão é a seguinte ---> Explicitar o domínio da função: f: A\subset\Re\rightarrow\Re.

a) f(x)=\frac{1}{x}

Estive pensando sobre a questão ---> No meu modo de pensar, x só não pode ser 0, ou seja, x deve ser x\neq0.

Agora *-) , realmente x pode assumir qualquer outro valor real?

Por favor me ajude!

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Funções

Mensagempor admin » Ter Set 09, 2008 15:35

Olá Cleyson, boa tarde, desculpe a ausência.

Para representar gráficos no fórum você precisa enviá-los como imagens.
Antes, as imagens precisam ser geradas localmente em seu computador através de alguma ferramenta.

Neste tópico há um comentário sobre os programas que você pode utilizar:
http://www.ajudamatematica.com/viewtopic.php?f=118&t=289&p=741#p741

Sobre a sua dúvida, sim, o domínio desta função apenas não contém o zero, x pode ser qualquer outro valor real.

Esta é uma hipérbole, uma representante das cônicas (uma seção de cones):
conicas.jpg


Cada cônica possui propriedades particulares.
A hipérbole é um conjunto de pontos para os quais a diferença das distâncias a dois pontos fixos é constante.
Estes "pontos fixos" são chamados de focos.

Sobre o esboço de gráficos:
http://www.ajudamatematica.com/viewtopic.php?f=72&t=150&p=299#p299

A idéia comentada neste tópico é sobre partir de uma função conhecida mais simples da classe e representar, em etapas, as variações, por exemplo: translações horizontais e verticais (envolvendo alterações das raízes, quando existirem), "esticar" e "encolher" a função etc.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.