• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(POLIEDRO) Provar que o no. é inteiro

(POLIEDRO) Provar que o no. é inteiro

Mensagempor Carolziiinhaaah » Sex Fev 04, 2011 15:39

Prove que o número \sqrt[3]{2 + \frac{10}{9}.\sqrt{3}} + \sqrt[3]{2 - \frac{10}{9}.\sqrt{3}} é inteiro.

gabarito: 2.
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (POLIEDRO) Provar que o no. é inteiro

Mensagempor Elcioschin » Sex Fev 04, 2011 17:30

Para facilitar façamos x = 2 + 10*V3/9, y = 2 - 10*V3/9 ----> x + y = 4 ----> xy = 4 - 100*3/81 ----> xy = 8/27 ----> ³V(xy) = 2/3

z = ³Vx + ³Vy ----> Elevando ao cubo:

z³ = (³Vx + ³Vy)³ ----> z³ = x + 3*³V(x²)*³Vy + 3*³Vx*³V(y²) + y ----> z³ = x + y + 3*³Vx*³Vy*(³Vx + ³Vy) ---->

z³ = 4 + 3*³V(xy)*z ----> z³ = 4 + 3*(2/3)*z ----> z³ = 4 + 2z

Esta equação do 3º grau admite uma raiz inteira z = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: (POLIEDRO) Provar que o no. é inteiro

Mensagempor Cleyson007 » Sáb Fev 05, 2011 12:13

Elcio, encontrei que x+y=4 e xy=\frac{2}{3}, veja:

Imagem

Resolvendo o sistema, \left\{\begin{matrix}
x+y=4 & \\ 
 xy=\frac{2}{3}& 
\end{matrix}\right., encontrei:

y=\frac{6+\sqrt{30}}{3}

x=\frac{6-\sqrt{30}}{3}

Bom, o exercício pede para provar que o número em questão é inteiro, correto? Ao fazer x + y = 4, já não fica provado que o número de fato é inteiro?

Não consegui entender o que foi feito para demonstrar que admite uma raiz inteira z = 2

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: (POLIEDRO) Provar que o no. é inteiro

Mensagempor MarceloFantini » Sáb Fev 05, 2011 13:20

Você está esquecendo o fato de que o número que ele quer na verdade é \sqrt[3]{x} + \sqrt[3]{y}, e não x+y.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (POLIEDRO) Provar que o no. é inteiro

Mensagempor Elcioschin » Sáb Fev 05, 2011 13:56

Complementando a resposta do Fantini:

Equação final ----> z³ = 2z + 4 ----> z³ - 2z + 4 = 0

Pesquisa de raízes racionais:

Divisores de 4 ----> + - 1, 2, 4
Divisotes co coeficiente de z³ (1) ----> + - 1

Se houver raízes racionais elas deverão ser dadas pelas relações entre os divisores ----> + - 4/1, 2/1, 1/1

Logo se existirem raízes racinais elas serão INTEIRAS ----> + - 4, 2, 1

Agora basta testar este 6 valores
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: (POLIEDRO) Provar que o no. é inteiro

Mensagempor Carolziiinhaaah » Sáb Fev 05, 2011 13:59

Obrigada Elcio! :-D
Bastante esclarecedor!
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?